首页> 外文OA文献 >Obstacle detection by recognizing binary expansion patterns
【2h】

Obstacle detection by recognizing binary expansion patterns

机译:通过识别二进制扩展模式进行障碍物检测

摘要

This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.
机译:本文描述了一种用于障碍物检测的技术,该技术基于纹理物体的图像平面投影的扩展,因为它与传感器的距离会减小。信息通过向量传递,向量的成分代表图像强度的一阶时间和空间导数,这些导数与通过局部发散发生碰撞的时间有关。这样的向量可以被表征为对应于“安全”或“危险”情况的模式。我们表明基本信息是由单个位向量分量传达的,代表相关派生符号。我们使用神经学习技术使用两个最近开发的高容量分类器,以从这种模式中识别碰撞的迫切性。

著录项

  • 作者

    Barniv Yair; Baram Yoram;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号