首页> 外文OA文献 >Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation
【2h】

Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

机译:用于3D空间操作的自主机器人无监督学习的多分辨率方案

摘要

This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.
机译:本文介绍了一种开发自主太空机器人(ASR)学习控制系统的新颖方法,该系统将ASR呈现为“婴儿”,即对先天知识不了解其运行环境的系统,但是通过行为获取技术,它可以从特定环境中的行动经验中获得这些知识(我们称其为“天文婴儿”)。学习技术植根于递归算法中,该归纳算法用于归纳生成人类早期认知发展过程中形成的嵌套模式。该算法从环境中提取数据,并通过相关和绑架的方式创建用于控制的模式。该系统足够强大,可以应对不断变化的环境,因为由于系统的多分辨率特性,此类更改通过总结经验来激发新方案的创建,同时仍保持最小的计算复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号