首页> 外文OA文献 >Unsupervised texture image segmentation by improved neural network ART2
【2h】

Unsupervised texture image segmentation by improved neural network ART2

机译:改进的神经网络ART2的无监督纹理图像分割

摘要

We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.
机译:我们在此提出一种用于空间机器人上的计算机视觉系统的纹理图像分割算法。用于模拟输入模式的改进的自适应共振理论(ART2)适用于基于通过快速空间灰度依赖方法(SGLDM)提取的一组纹理图像特征对图像进行分类。神经网络输入层中的非线性阈值函数由两部分构成:首先,为减少图像噪声对特征的影响,根据特征的类型选择了一组S型函数。其次,为了增强特征的对比度,我们采用模糊映射功能。当发生新模式时,可以通过自动增长机制不断增加输出层中的簇数。显示了实验结果和原始图片或分段图片,包括此方法与K-means算法之间的比较。用C语言编写的系统在带有图像板IT-150和CCD摄像机的SUN-4 / 330 sparc工作站上执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号