首页> 外文OA文献 >A transient FETI methodology for large-scale parallel implicit computations in structural mechanics
【2h】

A transient FETI methodology for large-scale parallel implicit computations in structural mechanics

机译:结构力学中大规模并行隐式计算的瞬态FETI方法

摘要

Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.
机译:显式代码通常用于模拟大型结构系统的非线性动力学,即使对于低频响应也是如此,这是因为隐式代码中传统上发现的重复分解导致的存储和CPU需求迅速使可用的计算资源不堪重负。随着并行处理的出现,这种趋势正在加速,因为显式方案也比隐式方案更易于并行化。但是,Courant稳定性条件对所有显式方案施加的时间步长限制尚不能(​​也许永远不会)被并行硬件的速度所抵消。因此,必须开发出高效且健壮的替代方法来替代直接方法,这些方法也适用于大规模并行处理,因为在模拟低频动态时,使用无条件稳定时间积分算法的隐式代码在计算上更加高效。在这里,我们提出了一种隐式方案的域分解方法,该方法比分解算法所需的存储量要少得多,它比其他流行的直接和迭代方法要快几倍,并且可以在共享和本地内存并行处理器上轻松实现,并且计算和通信方面的效率。拟议的瞬态域分解方法是Farhat和Roux为解决静态问题而开发的有限元撕裂和互连(FETI)方法的扩展。报告并分析了CRAY Y-MP / 8和iPSC-860 / 128系统的串行和并行性能结果,以解决实际的结构动力学问题。这些结果确立了FETI方法优于具有对角线缩放的串行/并行共轭梯度算法和串行/并行直接方法的优越性,并将iPSC-860 / 128并行处理器的计算能力与CRAY Y-进行了对比。 MP / 8系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号