首页> 外文OA文献 >Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data
【2h】

Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

机译:基于小波的融合和SAR与Landsat影像数据的无监督聚类增强热带土地覆盖制图

摘要

The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.
机译:对诸如中非雨林之类的森林地区的土地覆盖/土地利用进行表征和绘制地图是一项非常复杂的任务。这种复杂性主要是由于这些区域的范围,结果是由于没有一个单一的遥感仪器对这些大区域进行全面而连续的无云覆盖,以便提供中非和为了开发在地方和区域范围内应用的森林监测技术,我们建议利用多传感器遥感观测与现场数据相结合。多传感器数据的融合和聚类是朝着这种森林监测系统发展的第一步。在本文中,我们将描述一些涉及SAR和加蓬Lope保护区Landsat影像数据融合的初步实验。与以前的融合研究相似,我们的融合方法是基于小波的。融合提供了一个新的图像数据集,其中包含更详细的纹理特征,并保留了Thematic Mapper传感器观察到的较大的均匀区域。融合步骤之后是无监督聚类,并提供了该区域的植被图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号