首页> 外文OA文献 >Thermal Analysis for Orbiter and ISS Plume Impingement on International Space Station
【2h】

Thermal Analysis for Orbiter and ISS Plume Impingement on International Space Station

机译:国际空间站轨道器和国际空间站羽流撞击的热分析

摘要

The NASA Reaction Control System (RCS) Plume Model (RPM) is an exhaust plume flow field and impingement heating code that has been updated and applied to components of the International Space Station (ISS). The objective of this study was to use this code to determine if plume environments from either Orbiter PRCS jets or ISS reboost and Attitude Control System (ACS) jets cause thermal issues on ISS component surfaces. This impingement analysis becomes increasingly important as the ISS is being assembled with its first permanent crew scheduled to arrive by the end of fall 2000. By early summer 2001 , the ISS will have a number of major components installed such as the Unity (Node 1), Destiny (Lab Module), Zarya (Functional Cargo Block), and Zvezda (Service Module) along with the P6 solar arrays and radiators and the Z-1 truss. Plume heating to these components has been analyzed with the RPM code as well as additional components for missions beyond Flight 6A such as the Propulsion Module (PM), Mobile Servicing System, Space Station Remote Manipulator System, Node 2, and the Cupola. For the past several years NASA/JSC has been developing the methodology to predict plume heating on ISS components. The RPM code is a modified source flow code with capabilities for scarfed nozzles and intersecting plumes that was developed for the 44 Orbiter RCS jets. This code has been validated by comparison with Shuttle Plume Impingement Flight Experiment (SPIFEX) heat flux and pressure data and with CFD and Method of Characteristics solutions. Previous analyses of plume heating predictions to the ISS using RPM have been reported, but did not consider thermal analysis for the components nor jet-firing histories as the Orbiter approaches the ISS docking ports. The RPM code has since been modified to analyze surface temperatures with a lumped mass approach and also uses jet-firing histories to produce pulsed heating rates. In addition, RPM was modified to include plume heating from ISS jets to ISS components where the jet coordinates are specified, together with the engine cant angle. These latter studies have been focused on the PM with plumes from its reboost and ACS jets impinging on various ISS components and also focused on the Japanese H2 Transfer Vehicle (HTV) with the plumes from its reboost engines impinging on the Cupola window. This paper will present plume heating and surface temperature results on a number of ISS components with and without jet-firing histories, evaluate post-flight data, and describe any potential thermal issues
机译:NASA反应控制系统(RCS)羽流模型(RPM)是排气羽流流场和撞击加热代码,已更新并应用于国际空间站(ISS)的组件。这项研究的目的是使用此代码确定Orbiter PRCS喷气机或ISS再增压和姿态控制系统(ACS)喷气机的羽流环境是否会引起ISS组件表面的热问题。随着ISS的组装以及计划于2000年秋末抵达的第一批常驻机组人员的加入,这种冲击分析变得越来越重要。到2001年夏初,ISS将安装许多主要组件,例如Unity(节点1) ,Destiny(实验室模块),Zarya(功能性载货块)和Zvezda(服务模块),以及P6太阳能电池板和散热器以及Z-1桁架。这些组件的羽状加热已通过RPM代码进行了分析,并且对6A航班以外的其他任务组件进行了分析,例如推进模块(PM),移动服务系统,空间站远程操纵器系统,节点2和冲天炉。在过去的几年中,NASA / JSC一直在开发预测ISS组件羽流发热的方法。 RPM代码是经过修改的源流代码,具有针对44个Orbiter RCS喷嘴开发的喷口喷嘴和相交羽流的功能。该代码已通过与航天飞机冲击飞行实验(SPIFEX)的热通量和压力数据以及CFD和特性方法的比较进行了验证。已经报道了以前使用RPM对ISS进行的羽流加热预测的分析,但是没有考虑到Orbiter接近ISS对接端口时对组件的热分析或喷射燃烧的历史。此后,已对RPM代码进行了修改,以使用集总质量方法来分析表面温度,并且还使用喷射燃烧历史记录来生成脉冲加热速率。此外,对RPM进行了修改,以包括从ISS喷嘴到指定了喷嘴坐标的ISS组件的羽流加热,以及发动机倾斜角。后面的研究集中在PM的重燃和ACS喷流撞击到ISS的各个组件上,还研究了日本H2转运车(HTV),其重燃的发动机的羽流撞击在冲天炉的窗户上。本文将介绍具有和不具有喷射历史的许多ISS组件的羽流加热和表面温度结果,评估飞行后的数据,并描述任何潜在的热量问题

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号