首页> 外文OA文献 >Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion
【2h】

Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

机译:来自基于涡轮机的联合循环高超音速推进的进气模式转换的4马赫实验演示的重点

摘要

NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.
机译:NASA专注于联合循环,空气呼吸推进系统的技术,以使可重复使用的发射系统进入太空。基于涡轮的联合循环(TBCC)推进系统相对于亚音速起飞和返回任务段中的基于火箭的推进系统提供了特定的脉冲(Isp)改进,同时还提高了安全性。 TBCC最关键的支持技术包括:1)从低速推进系统到高速推进系统的模式转换; 2)高马赫涡轮发动机的开发; 3)基于创新的涡轮联合循环集成。为了应对这些挑战,NASA启动了一项实验模式转换任务,其中包括分析方法,以评估推进系统性能和设计规范的最新水平。一项努力是联合循环发动机大规模进气模式转换实验(CCE-LIMX),它是完全集成的TBCC推进系统,其流路尺寸与先前的NASA和DoD提出的Hypersonic实验飞行测试计划一致。该实验在美国宇航局GRC 10中通过10英尺超音速风洞(SWT)设施进行了测试。该活动的目的是解决关键的高超音速联合循环发动机问题,包括:(1)双重集成进气道可操作性和性能问题-起动限制,变形限制,排放要求和控制;(2)由以下原因引起的模式转换顺序元素在涡轮机和冲压喷气发动机/超燃冲压发动机流路之间进行切换(施加了可变的几何形状要求),以及(3)过渡期间的涡轮发动机瞬变(以及相关的时标)。完成了初始进气和动态表征阶段的测试,并演示了平稳模式转换。开发了一个数据库,该数据库侧重于4马赫过渡速度,具有有限的非设计要素,该数据库将用于指导将来的TBCC系统研究并验证更高级别的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号