首页> 外文OA文献 >Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion
【2h】

Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

机译:闭环磁流体动能转换的核电推进前景

摘要

Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.
机译:长期以来,核电推进(NEP)被公认为是科学和人类探索太阳系的主要使能技术,可以想象,它可以构成适用于空间商业的具有成本效益的空间运输系统的基础。实现这一愿景的主要技术障碍是开发高效的大功率(兆瓦级)电动推进器和开发低比重(小于1 kg / kWe)的发电厂。此外,需要对兆瓦级NEP系统进行全面的系统分析,以便严格评估任务能力和成本属性。该技术出版物通过系统地检查兆瓦级空间动力装置来解决其中的一些问题,在该装置中,气冷核反应堆用于在闭环布雷顿循环中驱动磁流体动力(MHD)发电机。考虑MHD能量转换的主要动机是将能量从太热的气体中转移出来的能力,该气体太热而无法与任何固体材料接触。这具有几个固有的优点,包括实现高热效率和功率密度的能力以及在高温下散热的能力。这些属性导致系统比重降低到低于基于涡轮机的系统所能达到的质量,而基于涡轮机的系统具有确定的固体温度极限,以确保可靠运行。在此,将热力学循环分析的结果与初步的系统分析放在一起进行讨论,以便收敛于优化性能的设计空间,同时又清楚地保持在工程可行性的既定范围内。讨论了MHD技术问题,包括非平衡磁盘发生器的概念设计以及利用中子感应电离机制作为增加电导率,增强性能和可靠性的手段的机会。然后将结果用于在2018年机会期间粗略检查火星飞行员的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号