首页> 外文OA文献 >Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments
【2h】

Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments

机译:铝箔轴承中的风功率损耗和在高压环境下运行的高速发电机的转子-定子间隙

摘要

Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.
机译:封闭式布雷顿循环(CBC)和封闭式超临界循环(CSC)发动机是将反应堆中的热量转换为电能进行机器人太空探索和居住的主要候选人。这些发动机概念包括安装在发动机轴上的永磁起动器/发电机以及必要的涡轮机械。要成功完成目前预期用于这些发动机的长期任务,将需要进行设计以充分解决机器内部的所有损失。这些发动机类型的初步热管理概念是使用循环工作流体提供所需的冷却。除了提供冷却之外,工作流体还将用作轴承润滑剂。由于这些微型涡轮机的独特应用,另外的要求是工作流体的零污染和多年完全免维护的运行。随着转速和平均工作压力的增加,气体箔轴承中以及发电机的转子定子间隙内的损失变得越来越重要。本文介绍了一项实验研究的结果,该实验获得了对气箔轴承和发电机转子-定子间隙的直接转矩测量。这些测量的测试条件包括最高每分钟42,000转的转速,最高45个大气压的压力以及氮气,氦气和二氧化碳的测试气体。这些条件提供的最大测试泰勒数接近一百万。结果表明,气体箔轴承和发电机风阻的平均工作密度增加时,功率损耗呈指数增长。如果遵循传统的设计范例,这些典型的“次级”损耗可能会大于系统总输出功率。提出了无量纲分析以将实验结果扩展到发电机风阻的CSC范围内。

著录项

  • 作者

    Bruckner Robert J.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号