首页> 外文OA文献 >Lunar Surface Stirling Power Systems Using Isotope Heat Sources
【2h】

Lunar Surface Stirling Power Systems Using Isotope Heat Sources

机译:利用同位素热源的月面斯特林动力系统

摘要

For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (~32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
机译:多年来,美国国家航空航天局一直使用the 238(Pu-238)的衰变(以通用热源(GPHS)的形式)作为放射性同位素热电发生器(RTG)的热源,后者为许多NASA任务。尽管RTG在使用它们的任务中具有令人印象深刻的可靠性记录,但它们相对较低的热电转换效率和of 238(Pu-238)的稀缺性促使NASA考虑使用其他功率转换技术。美国宇航局正在考虑将机器人和人类任务都返回月球表面,由于漫长的农历夜晚(地球日为14.75天),同位素动力系统是产生电能的诱人候选。 NASA目前正在开发先进的斯特林放射性同位素发生器(ASRG),作为候选的高效率电力系统,该系统在使用寿命开始时(BOL)会使用两个GPHS模块产生大于160 W的功率(效率约为32%)。 ASRG使用与RTG中使用的相同的Pu-238 GPHS模块,但是通过将它们耦合到斯特林转换器,可以将GPHS模块的数量减少四倍。这项研究考虑了使用241 241(Am-241)替代基于斯特林转换器的放射性同位素动力系统(RPS)中的Pu-238,其功率水平从几十瓦特到5 kWe。 Am-241用作GPHS模块中Pu-238的替代品。根据功率水平,对不同的斯特林热量输入和排出系统进行建模。已经发现,将Am-241 GPHS模块替换为ASRG可以将功率输出降低约五分之一,同时保持大约相同的系统质量。为了获得Pu-238 ASRG的标称电输出160 W,需要10个Am-241 GPHS模块。更高功率的系统需要从传导耦合热输入和从斯特林转换器转移到泵送回路或热管的转换。液体金属泵送回路被认为是热端的主要热传递,而功率水平高于1 kWe的排热端则考虑了水泵送回路/热管散热器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号