首页>
外文OA文献
>An Ensemble Approach to Building Mercer Kernels with Prior Information
【2h】
An Ensemble Approach to Building Mercer Kernels with Prior Information
展开▼
机译:使用先验信息构建Mercer核的集成方法
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
展开▼
机译:本文提出了一种基于Mercer Kernels理论的自动知识驱动的数据挖掘新方法,该方法是从原始图像空间到非常高的,可能是维数的特征空间的高度非线性对称正定映射。我们描述了一种称为“混合密度Mercer内核”的新方法,可直接从数据中学习内核功能,而不是使用预定义的内核。这些数据自适应内核可以使用贝叶斯公式对内核中的先验知识进行编码,从而允许在模型中编码物理信息。具体来说,我们展示了在数据样本极少的情况下该算法的使用。我们将结果与现有的Sloan Digital Sky Survey(SDSS)数据算法进行了比较,并证明了该方法相对于标准方法的优越性能。这些实验的代码已使用AUTOBAYES工具生成,该工具会根据抽象的统计模型规范自动生成有效且有文档证明的C / C ++代码。系统的核心是一个模式库,其中包含用于学习和知识发现算法(如EM的不同版本)或数值优化方法(如共轭梯度法)的模板。模板实例化由符号代数计算支持,这使AUTOBAYES可以查找封闭格式的解决方案,并在可能的情况下将其集成到代码中。
展开▼