首页> 外文OA文献 >System Design and Performance of the Two-Gyro Science Mode For the Hubble Space Telescope
【2h】

System Design and Performance of the Two-Gyro Science Mode For the Hubble Space Telescope

机译:哈勃太空望远镜的双陀螺科学模式的系统设计和性能

摘要

For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three of the six on-board rate gyros for attitude control. Failed gyros were eventually replaced through Space Shuttle Servicing Missions. The tragic loss of the Space Shuttle Columbia has resulted in the cancellation of all planned Shuttle based missions to HST. While a robotic servicing mission is currently being planned instead, controlling with alternate sensors to replace failed gyros can extend the HST science gathering until a servicing mission can be performed, and also extend science at HST s end of life. Additionally, sufficient performance may allow a permanent transition to operations with less than 3 gyros (by intentionally turning off working gyros saving them for later use) allowing for an even greater science mission extension. To meet this need, a Two Gyro Science (TGS) mode has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), Fixed Head Star Trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro input axis. The development of the TGS capability is the largest re-design of HST operations undertaken, since it affects several major spacecraft subsystems, the most heavily being the Pointing Control System (PCS) and Flight Software (FSW). Additionally, and equally important, are the extensive modifications and enhancements of the Planning and Scheduling system which must now be capable of scheduling science observations while taking into account several new constraints imposed by the TGS operational modes (such as FHST availability and magnetic field geometry) that will impact science gathering efficiency and target availability. This paper discusses the systems engineering design, development, and performance of the TGS mode, now in its final stages of completion.
机译:十五年来,哈勃太空望远镜(HST)的科学任务要求使用六个车载速率陀螺仪中的至少三个进行姿态控制。失败的陀螺仪最终通过航天飞机维修任务被替换。哥伦比亚号航天飞机的不幸损失导致​​取消了所有计划中的前往HST的航天飞机任务。相反,虽然目前正在计划进行机器人维修任务,但通过替换传感器进行控制以替换故障的陀螺仪可以延长HST科学的收集范围,直到可以执行维修任务为止,并且还可以延长HST使用寿命。另外,足够的性能可以允许永久过渡到少于3个陀螺仪的操作(通过有意地关闭工作陀螺仪以节省以后的使用),从而实现更大的科学任务扩展。为了满足这一需求,已经设计并使用磁力计(磁感测系统-MSS),固定头部恒星追踪器(FHST)和精细制导传感器(FGS)来设计和实施“双陀螺科学(TGS)”模式,以控制丢失的车辆速度陀螺仪输入轴。 TGS功能的发展是对HST操作进行的最大的重新设计,因为它影响了几个主要的航天器子系统,其中最严重的是指向控制系统(PCS)和飞行软件(FSW)。此外,同样重要的是,计划和调度系统的广泛修改和增强,现在必须能够调度科学观测,同时考虑到TGS操作模式施加的一些新约束(例如FHST可用性和磁场几何形状)这将影响科学采集的效率和目标可用性。本文讨论了目前处于完成阶段的TGS模式的系统工程设计,开发和性能。

著录项

  • 作者

    Prior Michael; Dunham Larry;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 20:30:08

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号