首页> 外文OA文献 >Environmental Barrier Coatings for Silicon-Based Ceramics
【2h】

Environmental Barrier Coatings for Silicon-Based Ceramics

机译:硅基陶瓷的环境屏障涂料

摘要

Silicon-based ceramics, such as SiC fiber-reinforced SiC (SiC/SiC ceramic matrix composites (CMC) and monolithic silicon nitride (Si3N4), are prime candidates for hot section structural components of next generation gas turbine engines. Silicon-based ceramics, however, suffer from rapid surface recession in combustion environments due to volatilization of the silica scale via reaction with water vapor, a major product of combustion. Therefore, application of silicon-based ceramic components in the hot section of advanced gas turbine engines requires development of a reliable method to protect the ceramic from environmental attack. An external environmental barrier coating (EBC) is considered a logical approach to achieve protection and CP long-term stability. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 Wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program (5). They consist of three layers, a silicon first bond coat, a mullite or a mullite + BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2) second bond coat, and a BSAS top coat. The EPM EBCs were applied on SiC/SiC CMC combustor liners in three Solar Turbines (San Diego, CA) Centaur 50s gas turbine engines. The combined operation of the three engines has accumulated over 24,000 hours without failure (approximately 1,250 C maximum combustor liner temperature), with the engine in Texaco, Bakersfield, CA, accumulating about 14,000 hours. As the commercialization of Si-based ceramic components in gas turbines is on the horizon, a major emphasis is placed on EBCs for two reasons. First, they are absolute necessity for the protection of Si-based ceramics from water vapor. Second, they can enable a major enhancement in the performance of gas turbines by creating temperature gradients with the incorporation of a low thermal conductivity layer. Thorough understanding of current state-of-the-art EBCs will provide the foundation upon which development of future EBCs will be based. Phase stability and thermal conductivity of EPM EBCs are published elsewhere. This paper will discuss the chemical/environmental durability and silica volatility of EPM EBCs and their impact on the coating's upper temperature limit.
机译:诸如SiC纤维增强SiC(SiC / SiC陶瓷基复合材料(CMC)和整体式氮化硅(Si3N4)等硅基陶瓷是下一代燃气轮机发动机热段结构组件的主要候选材料。但是,由于二氧化硅鳞片通过与水蒸气(燃烧的主要产物)反应而挥发,因此在燃烧环境中表面迅速退缩,因此,在先进燃气涡轮发动机的热区中使用硅基陶瓷组件需要开发一种可靠的保护陶瓷免受环境侵害的方法,外部保护层(EBC)被认为是实现保护和CP长期稳定性的合理方法,第一代EBC由莫来石(3Al2O3-2SiO2)键两层组成涂层和氧化钇稳定的氧化锆(YSZ,ZrO2-8 Wt。%Y2O3)面漆。第二代EBC,与第一代EBC是在NASA高速研究支持推进材料(HSR-EPM)计划中开发的。第一代EBC由两层组成:莫来石(3Al2O3-2SiO2)键合涂层和氧化钇稳定的氧化锆(YSZ,ZrO2-8 wt%Y2O3)面涂层。 NASA高速研究推动推进材料(HSR-EPM)计划(5)开发了与第一代EBC相比性能得到显着改善的第二代EBC。它们由三层组成:硅第一粘结层,莫来石或莫来石+ BSAS(BaO(1-x)-SrO(x)-Al2O3-2SiO2)第二粘结层和BSAS面涂层。 EPM EBC被应用于三台Solar Turbines(加利福尼亚州圣地亚哥)的Centaur 50s燃气涡轮发动机的SiC / SiC CMC燃烧室衬套上。这三台发动机的联合运行已累计超过24,000小时无故障(最高燃烧室衬里温度约1,250 C),而位于加利福尼亚州贝克斯菲尔德的Texaco的发动机累计运行约14,000小时。由于燃气轮机中基于Si的陶瓷组件的商业化已迫在眉睫,因此主要出于两个原因而将重点放在EBC上。首先,它们绝对是保护硅基陶瓷免受水蒸气侵害的必要条件。其次,通过结合低导热率层来创建温度梯度,它们可以大大提高燃气轮机的性能。对当前最先进的EBC的透彻了解将为未来EBC的发展奠定基础。 EPM EBC的相稳定性和导热性已在其他地方发表。本文将讨论EPM EBC的化学/环境耐久性和二氧化硅挥发性,以及它们对涂层温度上限的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号