首页> 外文OA文献 >Performance of the Wavelet Decomposition on Massively Parallel Architectures
【2h】

Performance of the Wavelet Decomposition on Massively Parallel Architectures

机译:小波分解在大规模并行架构上的性能

摘要

Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.
机译:传统上,傅立叶变换已用于执行信号分析和表示。但是尽管从其傅立叶变换中重建信号很简单,但是在其傅立叶表示中不包含对该信号的本地描述。为了缓解这个问题,先引入了窗口傅立叶变换,然后介绍了小波变换,并且已经证明,与传统的傅立叶变换相比,小波具有更好的定位能力,并且与窗口或傅立叶变换相比,时间或空间频率平面的划分更好转换。由于这些特性,并且在开发了用于计算任何信号的小波表示的几种快速算法之后,特别是由Mallat开发的多分辨率分析(MRA),小波变换已越来越多地应用于信号分析问题,尤其是现实生活中问题,其中速度至关重要。在本文中,我们提出并比较了不同并行架构上的有效小波分解算法。我们使用NASA遥感图像报告和分析实验测量结果。结果表明,我们的算法在当前的高性能并行系统上实现了显着的性能提升,并满足了科学应用和多媒体要求。在许多高性能计算机系统上收集的广泛性能测量结果揭示了这些系统的重要体系结构特征,这些特征与数字图像小波分解的处理要求有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号