首页> 外文OA文献 >Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power
【2h】

Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

机译:使用最大等轴测力确定测量动态肌肉力量的最佳负载

摘要

Maximal power output occurs when subjects perform ballistic exercises using loads of ~30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.
机译:当受试者使用一次重复最大值(1-RM)的约30-50%的负荷进行弹道运动时,会产生最大功率输出。但是,在功率测量之前执行1-RM测试需要大量时间,尤其是在测试涉及多个练习时。最大等距力(MIF)所需的测量时间远少于1-RM,可能是确定功率测试最佳负载的可接受方法。目的:基于MIF确定最佳负荷,以在腿部推举和卧推过程中最大化动态功率输出。方法:二十名健康志愿者(12名男性和8名女性;平均+/- SD年龄:31 +/- 6岁;体重:72 +/- 15公斤)进行了等腿压腿和卧推运动,在此期间测量了MIF使用压板。随后,受试者进行弹道腿部按压和卧推训练,使用的负荷分别对应以随机顺序显示的MIF的20%,30%,40%,50%和60%。使用弹力板和位置传感器,在弹道运动测试期间计算了最大瞬时功率。重复测量方差分析和Fisher LSD事后测试用于确定引发最大功率输出的负载。结果:对于腿部力量测试,六名受试者无法以20%和30%的MIF进行测试,因为这些负载小于可能的最轻负载(即,卸载的腿部压缩滑板组件的重量[31.4 kg]) 。对于卧推压力测试,五名受试者无法以20%的MIF进行测试,因为这些载荷小于未加载的铝棒的重量(即11.4千克)。因此,这些负载被排除在分析之外。腿部推举练习中存在一种主要的负荷影响趋势(p = 0.07),表明40%MIF负荷比60%MIF负荷倾向于产生更大的功率输出(效果大小= 0.38)。卧推运动存在明显的(p。0.05)负重作用。事后分析表明,负载对功率输出的影响为:30%> 40%> 50%= 60%。结论:MIF的40%和30%的负载分别在动态压腿和卧推期间产生最大功率输出。这些发现与基于1-RM加载时获得的发现相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号