首页> 外文OA文献 >Benchmarking Gas Path Diagnostic Methods: A Public Approach
【2h】

Benchmarking Gas Path Diagnostic Methods: A Public Approach

机译:基准气路诊断方法:一种公共方法

摘要

Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.
机译:最近的技术审查已确定需要对发动机健康管理(EHM)技术进行客观评估。需求有两个方面:技术开发人员需要相关的数据和问题来设计和验证新的算法和技术,而发动机系统集成商和操作员需要实用的工具来指导开发,然后评估所提出解决方案的有效性。本文介绍了由技术合作计划(TTCP)的推进和动力系统小组开发的可公开获得的气路诊断基准问题,以帮助解决这些需求。该问题在MATLAB(The MathWorks,Inc.)中进行了编码,并与非线性涡扇发动机仿真相结合,以产生具有相关噪声水平的“快照”测量,就好像在整个使用寿命期间从一组发动机中收集的一样。车队中的每台发动机都将经历独特的运行和退化情况,并且可能会遇到随机发生的相关气路故障,包括传感器,执行器和组件故障。 EHM社区面临的挑战是开发气路诊断算法,以可靠地执行故障检测和隔离。提供了基准问题的示例解决方案以及相关的评估指标。提出了一项计划,以将该基准问题传播给发动机健康管理技术社区并邀请技术解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号