首页> 外文OA文献 >Wavespace-Based Coherent Deconvolution
【2h】

Wavespace-Based Coherent Deconvolution

机译:基于波空间的相干反卷积

摘要

Array deconvolution is commonly used in aeroacoustic analysis to remove the influence of a microphone array's point spread function from a conventional beamforming map. Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources in a measurement are incoherent, which can be problematic for some aeroacoustic phenomena with coherent, spatially-distributed characteristics. While several algorithms have been proposed to handle coherent sources, some are computationally intractable for many problems while others require restrictive assumptions about the source field. Newer generalized inverse techniques hold promise, but are still under investigation for general use. An alternate coherent deconvolution method is proposed based on a wavespace transformation of the array data. Wavespace analysis offers advantages over curved-wave array processing, such as providing an explicit shift-invariance in the convolution of the array sampling function with the acoustic wave field. However, usage of the wavespace transformation assumes the acoustic wave field is accurately approximated as a superposition of plane wave fields, regardless of true wavefront curvature. The wavespace technique leverages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate its ability to determine magnitude and relative phase of multiple coherent sources. Multi-scale processing is explored as a means of accelerating solution convergence. A case with a spherical wave front is evaluated. Finally, a trailing edge noise experiment case is considered. Results show the method successfully deconvolves incoherent, partially-coherent, and coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave front cases warrant further investigation. A potential extension to nearfield beamforming is proposed.
机译:阵列去卷积通常用于航空声学分析中,以消除传统波束形成图对麦克风阵列点扩展功能的影响。不幸的是,大多数反卷积算法都假定测量中的声源是非相干的,这对于具有相干,空间分布特征的某些航空声现象可能会造成问题。虽然已经提出了几种算法来处理相干源,但是对于许多问题,某些算法在计算上是棘手的,而其他算法则需要对源场进行严格的假设。较新的广义逆技术有望实现,但仍在研究中以用于一般用途。提出了一种基于阵列数据波空间变换的交替相干反卷积方法。波空间分析提供了优于弯曲波阵列处理的优势,例如提供了阵列采样函数与声波场卷积的显式平移不变性。但是,波空间变换的使用假设声波场被精确地近似为平面波场的叠加,而与真实的波前曲率无关。波空间技术利用傅立叶变换快速评估平移不变卷积。该方法适用于理想的非相干和相干平面波场,并已证明该方法具有确定多个相干源的幅度和相对相位的能力。探索了多尺度处理作为加速解决方案融合的一种手段。评价具有球面波阵面的情况。最后,考虑了后沿噪声实验情况。结果表明,该方法成功地消除了非相干,部分相干和相干平面波场的卷积,达到了定量评估所必需的程度。弯曲的波前案例值得进一步研究。提出了对近场波束形成的潜在扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号