首页> 外文OA文献 >Integrated Docking Simulation and Testing with the Johnson Space Center Six-Degree of Freedom Dynamic Test System
【2h】

Integrated Docking Simulation and Testing with the Johnson Space Center Six-Degree of Freedom Dynamic Test System

机译:与约翰逊航天中心六自由度动态测试系统集成的对接仿真和测试

摘要

The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of "pathfinder" testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft s Low Impact Docking System (LIDS). Project team members have integrated the Orion simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a "pathfinder" activity in order to pave the way for future testing with the actual Orion sensors. This paper describes the test configuration and test results.
机译:探索系统架构定义了需要在低地球轨道(LEO)和低月球轨道(LLO)上对两个航天器进行会合,接近操作和对接(RPOD)的任务。未航行的航天器必须执行自动和/或自主的会合,接近操作和对接操作(通常称为自动会合和对接,AR&D)。乘员版本也可能执行AR&D,可能具有不同级别的自动化和/或自主权,并且还必须向乘员提供用于手动驾驶的相对导航信息。 RPOD传感器的功能对于星座计划的成功至关重要。这被视为CEV项目的主要风险之一。勘探技术开发计划(ETDP)的AR&D传感器技术项目旨在通过测试和仿真来提高所选相对导航传感器技术的技术成熟度,以降低这种风险。该项目活动之一是一系列“探路者”测试和模拟活动,以将相关的导航传感器与Johnson Space Center六自由度测试系统(SDTS)集成在一起。 SDTS将成为Orion航天器低冲击对接系统(LIDS)的主要测试地点。项目团队成员已将Orion仿真与SDTS计算机系统集成在一起,以便在对接和撤离场景中,可以使用相对的导航传感器和对接系统对回路进行实时闭环测试。两个相对的导航传感器被用作“探路者”活动的一部分,以便为将来使用实际Orion传感器进行测试铺平道路。本文介绍了测试配置和测试结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号