首页> 外文OA文献 >Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
【2h】

Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

机译:基于希尔伯特-黄算法的气弹飞行数据分析

摘要

This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.
机译:本报告调查了希尔伯特·黄(Hilbert Huang)变换在分析航空弹性飞行数据中的实用性。众所周知,经典的希尔伯特变换可用于函数或信号的时频分析。不幸的是,希尔伯特变换只能有效地应用于极小的一类信号,即那些在任何时刻都具有单一频率分量的信号。最近开发的Hilbert Huang算法通过称为经验模式分解的过程解决了经典Hilbert变换的局限性。使用这种方法,数据被过滤到一系列固有模式函数中,每个函数都具有良好的希尔伯特变换。以这种方式,希尔伯特·黄算法提供了一大类信号的时频分析。该功能强大的工具已应用于科学数据分析,结构系统识别,机械系统故障检测甚至图像处理。本报告的目的是演示Hilbert Huang算法在气动弹性系统分析中的潜在应用,以及诸如本地化在线处理之类的改进。讨论了系统输入和输出之间以及输出传感器之间的相关性应用,以表征多个数据通道的各个组件中存在的时变幅度和频率相关性。还介绍了在线稳定性分析和模式识别。使用来自F-18主动气动弹性翼飞机的气动弹性测试数据,航空结构测试翼和俯仰跳落仿真给出了示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号