首页> 外文OA文献 >Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data
【2h】

Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

机译:维京着陆舱高超声速空气动力学的计算以及与地面和飞行数据的比较

摘要

Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.
机译:比较了LAURA Navier-Stokes代码和来自地面和飞行测量的Viking Lander Capsule高超声速空气动力学数据。在理想的气体条件下,风洞数据可用于6马赫数的3.48%比例模型和10.35马赫数的2.75%比例模型。 Viking Lander 1的空气动力学飞行数据也来自机载仪表,其速度介于2900至4400 m / sec(14至23.3马赫)之间。获得了针对经测试或飞行的几何形状的LAURA流场解决方案,包括隧道条件下的钉刺效应和飞行中的有限速率化学效应。使用飞行器重心位置(修整角大约等于-11.1度),在隧道条件下计算出的修整角在从6马赫数据得出的角度的0.31度以内和从10.35马赫修整角的0.13度以内。 LAURA Mach 6的修整升力和阻力系数在测量数据的2%以内,计算出的修整升阻比在数据的4%以内。计算出的10.35马赫切线升力和阻力系数分别在风洞数据的5%和3%之内。计算出的修剪提升阻力比在10.35马赫数据的2%以内。使用标称密度曲线和重心位置,飞行条件下的LAURA纵倾角在从机载仪表测量的总角的0.5度以内。飞行条件下的LAURA修剪升力和阻力系数分别在飞行数据的7%和5%之内。计算的修剪提升/拖动比在数据的4%以内。计算出的空气动力学对重心位置,大气密度和网格细化的敏感性通常很小。结果将为需要非零攻角的未来火星进入飞行器提供更好的空气动力学不确定性估计。

著录项

  • 作者

    Edquist Karl T.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号