首页> 外文OA文献 >Enhanced p-sensitive k-anonymity models for privacy preserving data publishing
【2h】

Enhanced p-sensitive k-anonymity models for privacy preserving data publishing

机译:增强的p敏感k匿名模型,用于隐私保护数据发布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Publishing data for analysis from a micro data table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the k-anonymity model recently. In this paper, we propose two new privacy protectionmodels called (p, )-sensitive k-anonymity and (p+, )-sensitive k-anonymity, respectively. Different from previous the p-sensitive k-anonymity model, these new introduced models allow us to release a lot more information without compromising privacy. Moreover, we prove that the (p, )-sensitive and (p+, )-sensitive k-anonymity problems are NP-hard. We also include testing and heuristic generating algorithms to generate desired micro data table. Experimental results show that our introduced model could significantly reduce the privacy breach.
机译:从包含敏感属性的微数据表中发布数据进行分析,同时又保持个人隐私,是当今日益重要的问题。提出了k-匿名模型用于隐私保护数据发布。当着重于身份公开时,k-匿名模型在某种程度上不能保护属性公开。最近,人们为增强k-匿名模型做出了许多努力。在本文中,我们提出了两种新的隐私保护模型,分别称为(p,)敏感的k-匿名和(p +,)敏感的k-匿名。与以前的p敏感k匿名模型不同,这些新引入的模型使我们可以在不损害隐私的情况下发布更多信息。此外,我们证明了(p,)敏感和(p +,)敏感的k-匿名问题都是NP-难问题。我们还包括测试和启发式生成算法,以生成所需的微数据表。实验结果表明,我们引入的模型可以显着减少隐私泄露。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号