首页> 外文OA文献 >Towards adaptive operational requirements for optimal application of evaporation-suppressing monolayer to reservoirs via a 'universal design framework'
【2h】

Towards adaptive operational requirements for optimal application of evaporation-suppressing monolayer to reservoirs via a 'universal design framework'

机译:通过“通用设计框架”实现适应性操作要求,以将蒸发抑制单分子层最佳应用到储层中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Much of the chemical monolayer-based evaporation mitigation research was generated in the 1950s, 60s and 70s centred on the use of spreading long-chain fatty alcohols, such as hexadecanol (C16) and octadecanol (C18), on the water surface. Many researchers from this era have reported highly variable performance results (anywhere from 0-30% efficiency) attributing the highly variable evaporation reduction achieved to film volatilisation, drift, beaching on the lee shore and waves which can break-up or submerge the film.Failure to address this requirement has undoubtedly contributed to the lack of development in the use of monolayers despite some demonstration of useful evaporation suppression performance.ududIn addition recent studies have also indicated that all water bodies have a naturally-occurring surface film, referred to as a microlayer, which can interact with artificial (chemical) monolayers. Natural microlayers are produced by hydrophobic plant waxes, phenolic compounds and other humified material, which concentrates populations of micro-organisms capable of utilizing these materials as organic substrates. This explains why common artificial monolayers (with carbon chain lengths of up to 16) are highly susceptible to biodegradation. Studies on Australian brown water storages reveal highly concentrated microbial microlayer communities, due to the coincidence of leaf and bark fall with low rainfall (Pittaway and van den Ancker 2009). This variation in the concentration of humified organic compounds in the storages is associated with both the volume of the storage, and the riparian vegetation within the water catchment. ududThis paper sets out a strategic approach to the use of monolayer on a reservoir for evaporation mitigation. The approach recognises that every reservoir will have a specific set of user and environmental considerations which leads to a unique set of operational requirements. In order to capture and utilise this information a Universal Design Framework (UDF) has been developed. The UDF serves two purposes, firstly to inform the selection of monolayer material and system design for any given site (‘Planning Mode’), and secondly to inform (and potentially autonomously manage) day-to-day operations, i.e. the timing and amounts of monolayer application (‘Operational Mode’). The UDF takes into account the following parameters:ud• Critical water requirement periods: These will vary from location to location and at different times of the year. Hence, this is a user determined input. ud• Economics: The dollars-per-megalitre value of water will also vary from location to location and at different time of the year with respect to critical water requirement periods (e.g. irrigated cropping close to harvest). Included in this input is a user defined annual maximum cost outlay for the monolayer-based system.ud• Water storage factors: Inputs differ slightly depending on storage type (i.e. ring tank versus gully dam), but generally require information of length, width, shape, bank height, freeboard, full supply volume and geographical co-ordinate points for storage orientation. This would be determined by a basic on-site analysisud• Climate and weather factors: Monthly average evaporation demand, rainfall and ambient air temperature information is required, including particularly wind speed frequency and prevailing wind direction, (e.g. from a local Automatic Weather Station (AWS) or via the Bureau of Meteorology SILO database, http://www.longpaddock.qld.gov.au/silo/). In the Planning Mode mean and extreme historical climate data are used; and in the Operational Mode prevailing conditions are required.ud• Water quality and biological factors: Assessments are made of water source/s (e.g. runoff versus bore), water colour, turbidity, water chemistry (pH, electrical conductivity and UV absorbency), plus density of local catchment vegetation and catchment area. ududOnce the above parameters are known, the UDF is used to determine (in Planning Mode) the most suitable monolayer material/s and optimal arrangement of application equipment, including number of applicators, their arrangement and application strategies for the particular reservoir and monolayer product. In Operational Mode the UDF will guide (or if required, fully control) operational procedures, i.e. the implementation of a unique application strategy for a specific product according to the hour-by-hour prevailing conditions.ududThis paper also outlines decision-making processes within the UDF. Firstly, to determine suitable monolayer materials the UDF compares water quality and biological characteristics of the particular site to those of six benchmark reservoirs in SE Queensland which have been studied in detail (Pittaway and van den Ancker 2009). The biologically-closest informs the choice of appropriate monolayer material/s. Once the selection of a monolayer is made there are a number of unique characteristics that material possesses that will substantially influence the application strategies.ududSecondly, a simulation platform has been developed to determine the application strategies and operational requirements for the reservoir. The simulation enables rapid evaluation of a range of different sample water bodies to populate a decision chart similar to that for monolayer material selection. A central component of the simulation platform is a fluid-mechanical model of the dispersal of monolayer across a water surface area under the influence of environmental variables, principally wind speed and wind direction, which (in Planning Mode) determines: ud• optimal spacing between application points,ud• amount of monolayer applied from each applicator as well as the total amount applied, ud• placement of applicators to achieve optimal surface coverage, ud• number of applicator types required, and ud• percentage of surface coverage under a range of wind speeds and directions. ududThe above simulated output information is unique to the particular reservoir and is essentially a specification for the design and operation of a monolayer application system for that specific site, and is used firstly (Planning Mode) to select appropriate application equipment capable of satisfying the monolayer application requirements; and secondly, if installed as planned, as the basis for day-to-day monolayer application (Operational Mode). Simulation results to date indicate that from large reservoirs, optimal surface coverage is best achieved by a number of fixed application points surrounding and within the reservoir spaced no further than 12 metres apart; and that a greater concentration of applicators is required upwind from the prevailing wind direction in addition to higher rates of monolayer application.ududud
机译:1950年代,60年代和70年代,许多基于化学单层的蒸发缓解研究都集中在水表面扩散十六烷醇(C16)和十八醇(C18)等长链脂肪醇的使用上。这个时代的许多研究人员已经报告了性能变化很大的结果(效率从0%到30%左右),这归因于所实现的高度蒸发减少是胶片的挥发,漂移,在后岸的海滩和可能破裂或淹没胶片的波浪。尽管有一些有用的蒸发抑制性能的证明,但未能满足该要求无疑导致了使用单层膜的缺乏发展。 ud ud此外,最近的研究还表明,所有水体均具有天然存在的表面膜,称为作为微层,可以与人工(化学)单层相互作用。天然微层是由疏水性植物蜡,酚类化合物和其他腐殖质材料制成的,这些材料浓缩了能够将这些材料用作有机底物的微生物种群。这就解释了为什么常见的人工单层(碳链长度最多为16)对生物降解高度敏感的原因。对澳大利亚棕色水储量的研究表明,由于叶片和树皮的下落与降雨少同时发生,因此微生物的微生物层高度集中(Pittaway and van den Ancker 2009)。储存库中腐殖有机化合物浓度的这种变化与储存库的体积以及集水区内的河岸植被有关。 ud ud本文提出了在储层中使用单层减缓蒸发的战略方法。该方法认识到,每个水库都会有一套特定的用户和环境考虑因素,从而导致一系列独特的运行要求。为了捕获和利用此信息,已经开发了通用设计框架(UDF)。 UDF有两个目的,一是通知任何给定站点的单层材料和系统设计的选择(“计划模式”),二是通知(并可能自动管理)日常操作,即时间和数量单层应用程序(“操作模式”)。 UDF考虑以下参数:关键需水时间:这些时间因地点而异,并且在一年中的不同时间有所不同。因此,这是用户确定的输入。 ud•经济学:相对于关键的需水时期(例如接近收成的灌溉作物),每百万美元水的价值也将因地点和地点而不同。此输入中包括用户定义的基于单层系统的年度最大成本支出。 ud•储水因素:输入因存储类型(即环形水箱与沟坝)的不同而略有不同,但通常需要长度,宽度信息,形状,岸高,干舷,完整供应量和用于存储方向的地理坐标点。这将通过基本的现场分析来确定 ud•气候和天气因素:需要每月平均蒸发量需求,降雨量和周围空气温度信息,尤其包括风速频率和主要风向(例如,来自本地自动天气站点(AWS)或通过气象局SILO数据库(http://www.longpaddock.qld.gov.au/silo/)。在“计划模式”中,使用了平均和极端历史气候数据; ud•水质和生物因素:对水源(例如径流与孔径),水色,浊度,水化学(pH,电导率和紫外线吸收率)进行评估,再加上当地集水区植被和集水区的密度。一旦知道了以上参数,UDF将用于(在“计划模式”下)确定最合适的单层材料和涂覆设备的最佳布置,包括涂覆器的数量,其布置以及特定储层和储罐的涂覆策略。单层产品。在“操作模式”下,UDF将指导(或在必要时完全控制)操作程序,即根据每小时的主要条件为特定产品实施独特的应用策略。 ud ud本文还概述了以下决策:在UDF中进行流程。首先为了确定合适的单层材料,UDF将特定地点的水质和生物学特征与昆士兰东南部的六个基准水库进行了详细研究(Pittaway和van den Ancker 2009)。生物学上最接近的信息决定了合适的单层材料的选择。一旦选择了单层,材料将具有许多独特的特征,这些特征将极大地影响应用策略。 ud ud其次,已经开发了一个模拟平台来确定储层的应用策略和操作要求。通过仿真,可以快速评估一系列不同的样品水体,以填充类似于单层材料选择的决策图。模拟平台的核心组件是在环境变量(主要是风速和风向)的影响下,单层在水表面积上的扩散的流体力学模型,它(在“计划模式”下)确定: ud•最佳间距在涂抹点之间,从每个涂抹器涂抹的单层数量以及涂抹的总量,涂抹器的放置以实现最佳的表面覆盖率,涂抹器类型的数量和涂抹率在一定范围的风速和风向范围内。上面的模拟输出信息对于特定的油藏来说是唯一的,并且本质上是针对该特定站点的单层应用系统的设计和操作的规范,并且首先用于(计划模式)选择能够满足以下要求的适当应用设备单层应用需求;其次,如果按计划安装,则作为日常单层应用程序(操作模式)的基础。迄今为止的模拟结果表明,在大型油藏中,通过在油藏周围和内部的许多固定应用点之间相距不超过12米,可以实现最佳的地面覆盖率;并且除了较高的单层施涂率以外,还需要从盛行风向向上风集中更大的施涂器。 ud ud ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号