首页> 外文OA文献 >Connecting users and items with weighted tags for personalized item recommendations
【2h】

Connecting users and items with weighted tags for personalized item recommendations

机译:使用加权标签将用户和商品联系起来以进行个性化的商品推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tags are an important information source in Web 2.0. They can be used to describe users’ topic preferences as well as the content of items to make personalized recommendations. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. To eliminate the noise of tags, in this paper we propose to use the multiple relationships among users, items and tags to find the semantic meaning of each tag for each user individually. With the proposed approach, the relevant tags of each item and the tag preferences of each user are determined. In addition, the user and item-based collaborative filtering combined with the content filtering approach are explored. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on real world datasets collected from Amazon.com and citeULike website.
机译:标记是Web 2.0中的重要信息源。它们可用于描述用户的主题首选项以及项的内容以提出个性化推荐。但是,由于标签是用户提供的任意单词,因此它们包含很多噪音,例如标签同义词,语义歧义和个人标签。这种噪音给提高项目推荐的准确性带来了困难。为了消除标签的噪音,在本文中,我们建议利用用户,项目和标签之间的多重关系来分别找到每个用户的每个标签的语义。利用所提出的方法,确定每个项目的相关标签和每个用户的标签偏好。此外,还探索了基于用户和项目的协作过滤以及内容过滤方法。在从Amazon.com和citeULike网站收集的真实数据集上进行的实验中证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号