首页> 外文OA文献 >Object-based image analysis for forest species classification using Worldview-2 satellite imagery and airborne LiDAR data
【2h】

Object-based image analysis for forest species classification using Worldview-2 satellite imagery and airborne LiDAR data

机译:使用Worldview-2卫星图像和机载LiDAR数据的基于对象的图像分析,用于森林物种分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It has been shown that new remote sensing technologies have the potential to complement deficiencies of conventional methods such as aerial photograph interpretation and field sampling as well as improve the accuracy, reduce costs, and increase the number of applications within various forest environments. Newly available high resolution spatial data such as small footprint, multiple-return, discrete airborne LiDAR data and WorldView-2 satellite imagery offer excellent opportunities to develop new and efficient ways of solving conventional problems in forestry. However, the development of a comprehensive procedure for deployment of these new remote sensing data to create forest mapping products that are comparable and/or superior in accuracy to conventional photo-interpreted maps poses big challenges. Proper use of high spatial resolution data with object-based image analysis approach and nonparametric classification method such as decision trees may offer an alternative to aerial photograph interpretation in support of forest classification and mapping. This study presented ways of processing airborne LiDAR data and WorldView-2 satellite imagery for object-based forest species classification using decision trees in the Strzelecki Ranges, one of the four major Victorian areas of cool temperate rainforest in Australia. The results showed the contribution of four new WorldView-2 image bands to forest classifications, and demonstrated that the integration of airborne LiDAR and eight WorldView-2 bands significantly improved the classification accuracy.
机译:已经表明,新的遥感技术具有弥补传统方法(如航空照片解释和野外采样)的不足的潜力,并且可以提高准确性,降低成本并增加在各种森林环境中的应用数量。最新可用的高分辨率空间数据,例如占地面积小,多次返回,离散的机载LiDAR数据和WorldView-2卫星图像,为开发解决林业常规问题的新有效方法提供了极好的机会。然而,开发用于部署这些新的遥感数据的综合程序以创建与传统​​的带照片的地图具有可比性和/或更高的精度的森林测绘产品提出了巨大的挑战。通过基于对象的图像分析方法和非参数分类方法(如决策树)正确使用高分辨率的高分辨率数据可以为航空影像解释提供一种替代方法,以支持森林分类和制图。这项研究提出了利用Strzelecki山脉中决策树处理机载LiDAR数据和WorldView-2卫星图像以进行基于对象的森林物种分类的方法,该地区是澳大利亚维多利亚州四大凉爽温带雨林地区之一。结果显示了四个新的WorldView-2图像波段对森林分类的​​贡献,并表明机载LiDAR和八个WorldView-2波段的整合显着提高了分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号