首页> 外文OA文献 >Cartographie de paramètres forestiers par fusion évidentielle de données géospatiales multi-sources application aux peuplements forestiers en régénération et feuillus matures du Sud du Québec
【2h】

Cartographie de paramètres forestiers par fusion évidentielle de données géospatiales multi-sources application aux peuplements forestiers en régénération et feuillus matures du Sud du Québec

机译:通过明显融合多源地理空间数据应用程序对森林参数进行制图,以再生魁北克南部的林分和成熟硬木

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Foresters are faced with difficulties to obtain sub-polygon information with the mapping methods available nowadays. The main objective of this work consisted in the development of new methods able to improve the map accuracy of regenerating forest stands and mature forest stands in the South of Québec, Canada. The Dempster-Shafer Theory (DST) and the Dezert-Smarandache Theory (DSmT) showed their ability to integrate multiple heterogenous data sources to go further than the classical classification procedures like the maximum likelihood or the spectral unmixing, in terms of map accuracy. Improvement on the ability to map regenerating stands, passed from 82.7% with the maximum likelihood method to 91.1% with the Free DSm model with a total transfer of the mass of the"Union" class to the"Intersection" class (+ 8.4%). For the mature stands, the improvement passed from 63.8% with the K nearest neighbour to 79.5% with the DST according to a classical belief structuration and the hybrid decision rule for which the conflict threshold was fixed at 10% (+ 15.7%). Our results with DST and a bayesian belief structuration showed the difficulty to model the uncertainty in the fusion process. This is probably due to the lack of scientific knowledge about the influence of the biophysical and climatic parameters on the mapped forest stands and to the necessity to model specifically the uncertainty for each source. Our work showed concrete improvement when mapping forest stands with DST which is encouraging to continue explorating the fundamental principle of the proposed hybrid decision rule. This means a particular focus on the difference between the fused masses of each potential class after the fusion, to choose the best hypothesis.
机译:林业工作者面临着使用当今可用的映射方法获取子多边形信息的困难。这项工作的主要目的在于开发新方法,以提高加拿大魁北克南部再生林林和成熟林林的地图准确性。 Dempster-Shafer理论(DST)和Dezert-Smarandache理论(DSmT)显示了他们整合多个异构数据源的能力,它们在地图准确性方面比经典分类程序(例如最大似然或频谱分解)更进一步。映射再生林的能力的改进,从最大似然法的82.7%提高到了Free DSm模型的91.1%,而总质量从“联合”类转移到了“交叉点”类(+ 8.4%) 。对于成熟的林分,根据经典的信念结构和将冲突阈值固定为10%(+ 15.7%)的混合决策规则,从最近K邻居的63.8%改善为DST的79.5%。我们在DST和贝叶斯信念结构下的结果表明,难以对融合过程中的不确定性进行建模。这可能是由于缺乏关于生物物理和气候参数对测绘林分的影响的科学知识,以及对每种来源的不确定性进行专门建模的必要性。当用DST绘制森林图时,我们的工作显示出具体的改进,这鼓励继续探索提出的混合决策规则的基本原理。这意味着要特别关注融合后每个潜在类别的融合质量之间的差异,以选择最佳假设。

著录项

  • 作者

    Mora Brice;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 fre
  • 中图分类

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号