首页> 外文OA文献 >COMPOSITE MATERIALS FILLED WITH FERROMAGNETIC MICROWIRE INCLUSIONS DEMONSTRATING MICROWAVE RESPONSE TO TEMPERATURE AND TENSILE STRESS
【2h】

COMPOSITE MATERIALS FILLED WITH FERROMAGNETIC MICROWIRE INCLUSIONS DEMONSTRATING MICROWAVE RESPONSE TO TEMPERATURE AND TENSILE STRESS

机译:填充了铁磁纳米填料的复合材料,证明了微波对温度和拉伸应力的响应

摘要

Amorphous and polycrystalline microwires cast from ferromagnetic Fe-based or Co-based alloys in glass envelope demonstrate unique magneto-anisotropic and high frequency impedance properties that make them very attractive for sensor applications. Magnetic anisotropies of different types result from the inverse magnetostriction effect (positive or negative) at the interface between the glass shell and the metal core, in the presence of the residual stresses induced during the Taylor-Ulitovski casting method. Therefore, the glass shell is not just isolation, but also is one of most important factors that defines the physical properties of microwires. In particular, magnetic anisotropy allows high frequency impedance to be tuned by external stimuli such as magnetic field, tensile stress, or temperature. In the project, these effects are explored for the creation of low density microwire inclusions that might introduce tuneable microwave properties to polymer composite materials. The project aims to study high frequency impedance effects in ferromagnetic wires in the presence of tensile stress, temperature, and magnetic field. The integration of microwave equipment with mechanical and thermal measurement facilities is a very challenging task. In the project, we develop new experimental techniques allowing comprehensive study of composite materials with electromagnetic functionalities. The wire surface impedance recovered from such measurements can then be used to model the microwave response from wire-filled composites in free space. The obtained results significantly expand the horizon of potential applications of ferromagnetic wires for structural health monitoring
机译:由铁磁性铁基或钴基合金在玻璃外壳中铸造而成的非晶和多晶微丝表现出独特的磁各向异性和高频阻抗特性,使其对于传感器应用非常有吸引力。在Taylor-Ulitovski铸造方法中产生的残余应力的存在下,不同类型的磁各向异性是由玻璃壳和金属芯之间的界面处的逆磁致伸缩效应(正或负)引起的。因此,玻璃壳不仅是隔离的,而且是定义微线物理特性的最重要因素之一。特别地,磁各向异性使得高频阻抗能够通过诸如磁场,张应力或温度之类的外部刺激来调谐。在该项目中,探索了这些效应以创建低密度微线夹杂物,这些夹杂物可能将可调节的微波特性引入聚合物复合材料。该项目旨在研究在存在拉应力,温度和磁场的情况下铁磁导线中的高频阻抗效应。将微波设备与机械和热测量设施集成在一起是一项非常艰巨的任务。在该项目中,我们开发了新的实验技术,可以对具有电磁功能的复合材料进行全面研究。从这样的测量中恢复的导线表面阻抗随后可用于对自由空间中导线填充的复合材料的微波响应进行建模。获得的结果大大拓宽了铁磁线在结构健康监测中的潜在应用前景

著录项

  • 作者

    Zamorovskii Vlad;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号