首页> 外文OA文献 >Visualisation Studio for the analysis of massive datasets
【2h】

Visualisation Studio for the analysis of massive datasets

机译:Visualization Studio用于分析海量数据集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis describes the research underpinning and the development of a cross platform application for the analysis of simultaneously recorded multi-dimensional spike trains. These spike trains are believed to carry the neural code that encodes information in a biological brain. A number of statistical methods already exist to analyse the temporal relationships between the spike trains. Historically, hundreds of spike trains have been simultaneously recorded, however as a result of technological advances recording capability has increased. The analysis of thousands of simultaneously recorded spike trains is now a requirement. Effective analysis of large data sets requires software tools that fully exploit the capabilities of modern research computers and effectively manage and present large quantities of data. To be effective such software tools must; be targeted at the field under study, be engineered to exploit the full compute power of research computers and prevent information overload of the researcher despite presenting a large and complex data set. The Visualisation Studio application produced in this thesis brings together the fields of neuroscience, software engineering and information visualisation to produce a software tool that meets these criteria. A visual programming language for neuroscience is produced that allows for extensive pre-processing of spike train data prior to visualisation. The computational challenges of analysing thousands of spike trains are addressed using parallel processing to fully exploit the modern researcher’s computer hardware. In the case of the computationally intensive pairwise cross-correlation analysis the option to use a high performance compute cluster (HPC) is seamlessly provided. Finally the principles of information visualisation are applied to key visualisations in neuroscience so that the researcher can effectively manage and visually explore the resulting data sets. The final visualisations can typically represent data sets 10 times larger than previously while remaining highly interactive
机译:本文介绍了用于同时记录的多维峰值序列分析的跨平台应用程序的研究基础和开发。据信,这些尖峰序列带有在生物大脑中编码信息的神经密码。已经存在许多统计方法来分析峰值序列之间的时间关系。历史上,同时记录了数百个峰值列车,但是由于技术的进步,记录能力得到了提高。现在需要分析成千上万同时记录的峰值列车。有效地分析大型数据集需要软件工具,这些工具应充分利用现代研究计算机的功能并有效地管理和呈现大量数据。为了使此类软件工具有效,必须;致力于研究的领域,旨在提供研究计算机的全部计算能力,并防止研究人员的信息过载(尽管存在大量复杂的数据集)。本文产生的Visualization Studio应用程序将神经科学,软件工程和信息可视化领域融合在一起,以产生满足这些条件的软件工具。产生了一种用于神经科学的可视化编程语言,该语言可以在可视化之前对尖峰序列数据进行广泛的预处理。使用并行处理来充分利用现代研究人员的计算机硬件,可以解决分析数千个尖峰序列的计算难题。在计算密集的成对互相关分析的情况下,无缝提供了使用高性能计算集群(HPC)的选项。最后,信息可视化的原理被应用到神经科学的关键可视化中,以便研究人员可以有效地管理和可视化地探索结果数据集。最终的可视化效果通常可以表示比以前大10倍的数据集,同时保持高度交互性

著录项

  • 作者

    Tucker Roy Colin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号