首页> 外文OA文献 >A Hybrid Evolutionary Search Concept for Data-based Generation of Relevant Fuzzy Rules in High Dimensional Spaces
【2h】

A Hybrid Evolutionary Search Concept for Data-based Generation of Relevant Fuzzy Rules in High Dimensional Spaces

机译:高维空间中基于数据的相关模糊规则生成的混合进化搜索概念

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we propose a hybrid fuzzy-evolutionary system for fuzzy modelling in high dimensional spaces. The system architecture is based on a Michigan-style approach (one individual represents one fuzzy rule). The design of the evolutionary algorithm makes use of a distance measure in the search space that in turn reflects some heuristic assumptions about the fitness landscape. Additionally, strategy parameters are dynamically adapted by means of a fuzzy controller. The approach is successfully applied to a complex benchmark problem as well as to several real-world modelling tasks such as the cancellation behaviour of insurance clients and the classification of automatic gearboxes.
机译:在本文中,我们提出了一种用于高维空间模糊建模的混合模糊进化系统。系统体系结构基于密歇根式方法(一个人代表一个模糊规则)。进化算法的设计利用了搜索空间中的距离度量,该距离度量反过来反映了有关适应度景观的一些启发式假设。另外,借助于模糊控制器动态地调整策略参数。该方法已成功应用于复杂的基准问题以及一些实际的建模任务,例如保险客户的取消行为和自动变速箱的分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号