首页> 外文OA文献 >Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring
【2h】

Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring

机译:在计算机断层扫描上自动进行肝肿瘤分割,以进行患者治疗计划和监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset.
机译:通过计算机断层扫描(CT)进行肝肿瘤分割和肿瘤负荷分析在选择肝病治疗策略和监测治疗中起着重要作用。本文提出了一种新的造影增强CT图像分割肝脏肿瘤的方法。由于用于肝治疗计划的肿瘤的手动分割既费力又费时,因此需要高精度的自动肿瘤分割。所提出的框架是全自动的,不需要用户交互。拟议的基于患者真实世界临床数据评估的细分是基于将杜鹃优化和模糊c均值算法与随机Walkers算法相结合的混合方法。使用临床肝脏数据集验证了所提出方法的准确性,该临床肝脏数据集包含用于肝脏肿瘤分割的最多肿瘤数(总共包含127个肿瘤)之一,并由放射顾问顾问进一步验证了结果。与其他分割方法相比,在3Dircadb数据集中,平均重叠误差为22.78%,骰子相似系数为0.75,平均重叠误差为15.61%,与其他分割方法相比,该方法能够实现文献报道的肝肿瘤分割的最高准确性之一。 MIDAS数据集中的骰子相似系数为0.81。所提出的方法能够胜过文献中报道的大多数其他肿瘤分割方法,同时与文献中性能最佳的自动方法之一相比,重叠误差提高了6%。考虑到肿瘤的数量以及肿瘤对比增强和肿瘤外观的变化,提出的框架能够提供始终如一的准确结果,而在3Dircadb数据集中,估计的肿瘤负荷的平均误差为0.84%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号