首页> 外文OA文献 >Comparison of classical and sequential design of experiments in note onset detection
【2h】

Comparison of classical and sequential design of experiments in note onset detection

机译:音符发作检测中经典和顺序设计实验的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Design of experiments is an established approach to parameter optimization of industrial processes. In many computer applications however it is usual to optimize the parameters via genetic algorithms. The main idea of this work is to apply design of experiment’s techniques to the optimization of computer processes. The major problem here is finding a compromise between model validity and costs, which increase with the number of experiments. The second relevant problem is choosing an appropriate model, which describes the relationship between parameters and target values. One of the recent approaches here is model combination,which can be used in sequential designs in order to improve automatic prediction ofthe next trial point. In this paper a musical note onset detection algorithm will be optimized using sequential parameter optimization with model combination. It will be shown that parameter optimization via design of experiments leads to better values of the target variable than usual parameter optimization via grid search or genetic optimization algorithms. Furthermore, the results of this application study reveal, whether the combination of many models brings improvements in finding the optimal parameter setting.
机译:实验设计是工业过程参数优化的既定方法。然而,在许多计算机应用中,通常是通过遗传算法来优化参数。这项工作的主要思想是将实验技术的设计应用于计算机流程的优化。此处的主要问题是在模型有效性和成本之间找到折衷方案,随着实验次数的增加,该成本会增加。第二个相关问题是选择合适的模型,该模型描述了参数和目标值之间的关系。这里的最新方法之一是模型组合,该模型组合可用于顺序设计中,以改善对下一个试验点的自动预测。在本文中,音符起步检测算法将使用模型组合的顺序参数优化进行优化。将显示,与通过网格搜索或遗传优化算法进行的常规参数优化相比,通过实验设计进行的参数优化可导致更好的目标变量值。此外,此应用程序研究的结果还揭示出,许多模型的组合是否在寻找最佳参数设置方面带来了改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号