首页> 外文OA文献 >Testing for Symmetric Error Distribution in Nonparametric Regression Models
【2h】

Testing for Symmetric Error Distribution in Nonparametric Regression Models

机译:在非参数回归模型中测试对称误差分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the problem of testing symmetry of the error distribution in a nonparametric regression model we propose as a test statistic the difference between the two empirical distribution functions of estimated residuals and their counterparts with opposite signs. The weak convergence of the difference process to a Gaussian process is shown. The covariance structure of this process depends heavily on the density of the error distribution, and for this reason the performance of a symmetric wild bootstrap procedure is discussed in asymptotic theory and by means of a simulation study. In contrast to the available procedures the new test is also applicable under heteroscedasticity.
机译:对于在非参数回归模型中检验误差分布的对称性的问题,我们建议将估计残差的两个经验分布函数与具有相反符号的对应项之间的差异作为检验统计量。显示了差分过程到高斯过程的弱收敛。此过程的协方差结构在很大程度上取决于误差分布的密度,因此,在渐近理论中并通过仿真研究,讨论了对称野生自举过程的性能。与现有程序相反,新测试也适用于异方差情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号