首页> 外文OA文献 >Multi-Objective Optimization for Software Testing Effort Estimation
【2h】

Multi-Objective Optimization for Software Testing Effort Estimation

机译:软件测试工作量估计的多目标优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Software Testing Effort (STE), which contributes about 25-40% of the total development effort, plays a significant role in software development. In addressing the issues faced by companies in finding relevant datasets for STE estimation modeling prior to development, cross-company modeling could be leveraged. The study aims at assessing the effectiveness of cross-company (CC) and within-company (WC) projects in STE estimation. A robust multi-objective Mixed-Integer Linear Programming (MILP) optimization framework for the selection of CC and WC projects was constructed and estimation of STE was done using Deep Neural Networks. Results from our study indicate that the application of the MILP framework yielded similar results for both WC and CC modeling. The modeling framework will serve as a foundation to assist in STE estimation prior to the development of new a software project.
机译:软件测试工作量(STE)占总开发工作量的25-40%,在软件开发中起着重要作用。在解决公司在开发之前为STE估算模型找到相关数据集时所面临的问题时,可以利用跨公司建模。该研究旨在评估跨公司(CC)和公司内部(WC)项目在STE估算中的有效性。构建了用于CC和WC项目选择的健壮的多目标混合整数线性规划(MILP)优化框架,并使用深度神经网络对STE进行了估算。我们的研究结果表明,对于WC和CC建模,MILP框架的应用产生了相似的结果。在开发新的软件项目之前,建模框架将作为基础来协助STE估算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号