首页> 外文OA文献 >A data mining approach to incremental adaptive functional diagnosis
【2h】

A data mining approach to incremental adaptive functional diagnosis

机译:一种增量自适应功能诊断的数据挖掘方法

摘要

This paper presents a novel approach to functional fault diagnosis adopting data mining to exploit knowledge extracted from the system model. Such knowledge puts into relation test outcomes with components failures, to define an incremental strategy for identifying the candidate faulty component. The diagnosis procedure is built upon a set of sorted, possibly approximate, rules that specify given a (set of) failing test, which is the faulty candidate. The procedure iterative selects the most promising rules and requests the execution of the corresponding tests, until a component is identified as faulty, or no diagnosis can be performed. The proposed approach aims at limiting the number of tests to be executed in order to reduce the time and cost of diagnosis. Results on a set of examples show that the proposed approach allows for a significant reduction of the number of executed tests (the average improvement ranges from 32% to 88%).
机译:本文提出了一种新的功能故障诊断方法,该方法采用数据挖掘来利用从系统模型中提取的知识。这些知识将测试结果与组件故障联系起来,以定义用于识别候选故障组件的增量策略。诊断过程建立在一组排序的,可能近似的规则上,这些规则指定给定(一组)失败测试的给定(失败的候选者)。该过程将反复选择最有希望的规则,并请求执行相应的测试,直到将某个组件识别为有故障或无法执行诊断为止。所提出的方法旨在限制要执行的测试数量,以减少诊断的时间和成本。一组示例的结果表明,所提出的方法可以显着减少已执行测试的数量(平均改进范围为32%至88%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号