首页> 外文OA文献 >Robust Moving Objects Detection in Lidar Data Exploiting Visual Cues
【2h】

Robust Moving Objects Detection in Lidar Data Exploiting Visual Cues

机译:利用视觉提示的激光雷达数据中的鲁棒运动对象检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detecting moving objects in dynamic scenes from sequences of lidar scans is an important task in object tracking, mapping, localization, and navigation. Many works focus on changes detection in previously observed scenes, while a very limited amount of literature addresses moving objects detection. The state-of-the-art method exploits Dempster-Shafer Theory to evaluate the occupancy of a lidar scan and to discriminate points belonging to the static scene from moving ones. In this paper we improve both speed and accuracy of this method by discretizing the occupancy representation, and by removing false positives through visual cues. Many false positives lying on the ground plane are also removed thanks to a novel ground plane removal algorithm. Efficiency is improved through an octree indexing strategy. Experimental evaluation against the KITTI public dataset shows the effectiveness of our approach, both qualitatively and quantitatively with respect to the state- of-the-art.
机译:从激光雷达扫描序列中检测动态场景中的运动对象是对象跟踪,映射,定位和导航的重要任务。许多作品集中于先前观察到的场景中的变化检测,而很少数量的文献涉及移动物体的检测。最先进的方法利用Dempster-Shafer理论来评估激光雷达扫描的占用情况,并从移动的场景中区分出属于静态场景的点。在本文中,我们通过离散占用表示并通过视觉提示消除误报,从而提高了该方法的速度和准确性。由于采用了新颖的接地层去除算法,因此还可以去除位于接地层上的许多误报。通过八叉树索引策略可以提高效率。针对KITTI公开数据集的实验评估表明,相对于最新技术,该方法在定性和定量方面均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号