首页> 外文OA文献 >Performance comparison of blind and non-blind channel equalizers using artificial neural networks
【2h】

Performance comparison of blind and non-blind channel equalizers using artificial neural networks

机译:使用人工神经网络的盲和非盲信道均衡器的性能比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In digital communication systems, multipath propagation induces Inter Symbol Interference (ISI). To reduce the effect of ISI different channel equalization algorithms are used. Complex equalization algorithms allow for achieving the best performance but they do not meet the requirements for implementation of real-time detection at low complexity, thus limiting their application. In this paper, we present different blind and non-blind equalization structures based on Artificial Neural Networks (ANNs) and, also, we analyze their complexity versus performance. Since the activation function at the output layer depends on the cost function with respect to the input, in the present work we use mean squared error as loss function for the output layer. The simulated network is based on multilayer feedforward perceptron ANN, which is trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network to improve the convergence speed. Simulation results demonstrate that the implementation of equalizers using ANN provides an upper hand over the performance and computational complexity with respect to conventional methods.
机译:在数字通信系统中,多径传播会引起符号间干扰(ISI)。为了减少ISI的影响,使用了不同的信道均衡算法。复杂的均衡算法可以实现最佳性能,但是它们不满足以低复杂度实现实时检测的要求,因此限制了它们的应用。在本文中,我们提出了基于人工神经网络(ANN)的不同的盲和非盲均衡结构,并且,我们还分析了它们的复杂性与性能之间的关系。由于输出层的激活函数取决于输入的成本函数,因此在当前工作中,我们使用均方误差作为输出层的损失函数。该仿真网络基于多层前馈感知器人工神经网络,该网络通过利用误差反向传播算法进行训练。根据网络的训练更新网络的权重以提高收敛速度。仿真结果表明,与传统方法相比,使用ANN实施均衡器可提供更高的性能和计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号