首页> 外文OA文献 >Finite element simulation of crack propagation and delamination in layered shells due to blade cutting
【2h】

Finite element simulation of crack propagation and delamination in layered shells due to blade cutting

机译:刀片切割导致层状壳中裂纹扩展和分层的有限元模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The focus of this work is on the simulation of crack propagation and delamination in layered shells due to cutting by sharp blades. The main features of these type of problems are: material non-linearities, contact, large deformations, fracture and delamination make the problem highly non-linear, suggesting to carry out the simulation in an explicit dynamics framework; the shell layered structure with possible delamination suggest the use of solid-shell elements; the very small thickness of individual layers requires a selective mass scaling to allow for an efficient implementation of solid-shell elements in explicit dynamics; the dominant crack path is determined by the known blade trajectory, which justifies the adoption of an inter-element description of fracture; the blade sharpness introduces in the problem an extremely small geometrical scale (orders of magnitude smaller than a typical element in-plane finite element size) which cannot be resolved using standard cohesive element formulations.udIn order to obtain an accurate prediction of crack propagation, the cutting process is here described by means of directional cohesive elements [1,2], i.e. massless string elements attached to the opening faces, dissipating the interface cohesive energy upon elongation and able to detect contact with the cutting blade. Upon contact, the string element interacts with the cutting blade and deforms, transmitting cohesive forces to the two crack flanks in the correct directions. udThe presence of different layers is accounted for by stacking one or more solid-shell elements per layer through the thickness. An ad-hoc procedure for topology updating has been developed to handle the through-the-thickness crack propagation. The effect of the number of introduced directional cohesive elements per opening face is critically assessed. Possible layer delamination is accounted for by introducing cohesive interfaces between layers.
机译:这项工作的重点是模拟由于锋利的刀片切割而在层状壳体中产生的裂纹扩展和分层。这些类型问题的主要特征是:材料非线性,接触,大变形,断裂和分层使问题高度非线性,这建议在一个明确的动力学框架中进行仿真;可能分层的壳层结构建议使用实心壳元素;单个层的厚度非常小,需要进行选择性的质量缩放,以允许在显式动力学中有效地实现固体元素;主要的裂纹路径由已知的叶片轨迹确定,这证明了采用元素间断裂描述是合理的。刀片的锋利度在问题中引入了非常小的几何尺寸(比典型的元素平面内有限元素尺寸小几个数量级),无法使用标准的内聚元素公式来解决。 ud为了获得对裂纹扩展的准确预测,在这里,切割过程是通过定向粘结元件[1,2]来描述的,即附着在开口面上的无质量的细绳元件,这些元件在伸长时会消散界面粘结能,并且能够检测与切割刀片的接触。接触时,弦线元件与切割刀片相互作用并变形,将内聚力沿正确方向传递到两个裂纹侧面。 ud通过在厚度上每层堆叠一个或多个固体元素来说明存在不同的层。已经开发了用于拓扑更新的临时程序来处理整个厚度的裂纹扩展。严格评估每个开口面引入的方向性粘结元件数量的影响。通过在层之间引入内聚界面来解决可能的层分层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号