首页> 外文OA文献 >A physical hybrid artificial neural network for short term forecasting of PV plant power output
【2h】

A physical hybrid artificial neural network for short term forecasting of PV plant power output

机译:物理混合人工神经网络用于光伏电站发电量的短期预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main purpose of this work is to lead an assessment of the day ahead forecasting activity of the power production by photovoltaic plants. Forecasting methods can play a fundamental role in solving problems related to renewable energy source (RES) integration in smart grids. Here a new hybrid method called Physical Hybrid Artificial Neural Network (PHANN) based on an Artificial Neural Network (ANN) and PV plant clear sky curves is proposed and compared with a standard ANN method. Furthermore, the accuracy of the two methods has been analyzed in order to better understand the intrinsic errors caused by the PHANN and to evaluate its potential in energy forecasting applications. © 2015 by the authors; licensee MDPI, Basel, Switzerland.
机译:这项工作的主要目的是领导对光伏电站发电活动的前一天预测活动进行评估。预测方法可以在解决与智能电网中的可再生能源(RES)集成相关的问题中发挥重要作用。在此,提出了一种新的混合方法,称为基于人工神经网络(ANN)和PV植物晴朗天空曲线的物理混合人工神经网络(PHANN),并将其与标准ANN方法进行了比较。此外,已对这两种方法的准确性进行了分析,以更好地了解PHANN引起的内在误差,并评估其在能源预测应用中的潜力。 ©2015作者瑞士巴塞尔的MDPI许可证持有者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号