首页> 外文OA文献 >Robust direct data-driven controller tuning with an application to vehicle stability control
【2h】

Robust direct data-driven controller tuning with an application to vehicle stability control

机译:强大的直接数据驱动控制器调节功能,可应用于车辆稳定性控制

摘要

In direct data-driven controller tuning, a mathematical model of the plant is not needed, as the control law is directly derived from experimental data. Because the most widely used data-driven techniques are based on the assumption that the underlying dynamics - albeit unknow - is linear, the performance of the resulting controller may not be acceptable with systems whose operating region vary along the time. In this paper, we discuss how to robustify linear data-driven design by exploiting the features of scenario optimization. More specifically, we carry out a modified version of the well known virtual reference feedback tuning approach where probabilistic performance guarantees are given also when the current operating condition is different from the one observed in the controller identification experiment. We validate the proposed approach on a vehicle stability control problem, via a thorough simulation campaign on a multibody simulator. The experimental results show the effectiveness of the proposed approach in a complex real-world setting.
机译:在直接数据驱动的控制器调整中,不需要工厂的数学模型,因为控制律直接来自实验数据。因为最广泛使用的数据驱动技术是基于这样的假设,即潜在的动力学(尽管是未知的)是线性的,所以对于其工作区域随时间变化的系统,最终的控制器的性能可能是不可接受的。在本文中,我们讨论了如何通过利用方案优化的功能来增强线性数据驱动的设计。更具体地说,我们执行了众所周知的虚拟参考反馈调整方法的修改版本,其中,当当前操作条件不同于在控制器识别实验中观察到的条件时,也可以提供概率性能保证。我们通过在多体模拟器上进行彻底的模拟运动,验证了针对车辆稳定性控制问题的建议方法。实验结果表明,该方法在复杂的实际环境中是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号