首页> 外文OA文献 >Towards More Reliable MAC and PHY Layer Designs for High QoS Achievements for Safety Messaging in DSRC Systems
【2h】

Towards More Reliable MAC and PHY Layer Designs for High QoS Achievements for Safety Messaging in DSRC Systems

机译:寻求更可靠的MAC和PHY层设计,以实现DSRC系统中安全消息传递的高QoS成就

摘要

Broadcast communications are widely proposed for safety messaging. In the case of highway vehicular networks and constantly communicating safety messages inevitably cause the well-known hidden terminal problem. Three existing leading repetition-based broadcasting protocols have shown to meet the reliability and delay requirements for Dedicated Short Range Communications (DSRC) safety systems. We propose a quantitative model to evaluate the quality of service (QoS) of DSRC systems using these three leading repetition-based protocols under hidden terminals and highway scenarios. The performance of our model is analyzed by means of probability of success and delay performances. We also present three new Medium Access Control (MAC) layer design protocols for safety messaging applications. The main protocol we introduce is known as Passive Cooperative Collision Warning (PCCW) protocol for repetition based vehicular safety message reception reliability improvement in DSRC. The PCCW protocol and jointly proposed Enhanced-PCCW (EPCCW) and emergency-PCCW (ePCCW) protocols variants can work on top of existing repetition protocols for serving as a passive collision warning mechanism in the MAC Layer. A full analytical derivation of the relative reliability and delay performances for all three PCCW, EPCCW and ePCCW protocols are provided, serving as intuitive performance evaluators. EPCCW employs the physical (PHY) layer to create sub-slots for the purpose of further increasing reliability by both avoiding and minimizing probability of collision at slots that would nominally fail. Analytical and simulation results of PCCW and EPCCW agree, and show a significant reduction in message failure rate versus the leading repetition protocols, especially under high collision scenarios up to 40% at optimal, and 80% at higher repetitions. Additionally, an improvement in average timeslots delay is observed, which facilitates improved vehicular safety messaging. ePCCW is particularly useful for emergency vehicle (EV) communications. This enhancement makes meeting stringent quality of service (QoS) requirements particularly prevalent in safety applications of DSRC systems. ePCCW show up to 77% reliability improvement relative to a leading alternative is realized. Additionally, the proposed system is shown to have a decreased average timeslots delay that is well within acceptable delay threshold, and provides the best reliability in its class, which is key to safety messaging. In all our simulation results, we use our accurate Orthogonal Frequency Division (OFDM) MAC and physical (PHY) layer designs. The PHY layer simulator is a new object-oriented simulation environment, and is achieved using high-level design, parallelism and usability for the simulation environment. A high-level design and GUI layouts of the proposed simulator is shown in details. This can serve as a learning/research tool for students or practiced professionals to investigate particular designs. In addition, we provide a simple technique to implement simulation partitioning for increased parallel performance of reconfigurable object-oriented OFDM simulators. This simple technique applies to scenarios where there is disproportionate simulation duration between different OFDM configurations. It is shown to decrease total simulation time considerably. Additionally, we present a study on different demapping schemes at the PHY level. We propose the use of a linear demapper over a recently proposed non-linear demapper. The study is also presented under different decoding schemes of DSRC receivers. We also propose the use of equalization concepts in frequency domain that exploit the frequency domain channel matrix to combat inter-carrier interference (ICI) instead of inter-symbol interference (ISI) in DSRC systems. It is shown that the DSRC system with the frequency-domain equalization scheme achieves a considerable performance enhancement compared to both the conventional and the Viterbi-aided channel estimation schemes that try to combat ISI in terms of both Packet Error Rate (PER) and Bit Error Rate (BER) at relatively high and low velocities.
机译:广播通信被广泛建议用于安全消息传递。在公路车辆网络中,不断传递安全消息不可避免地导致众所周知的隐藏终端问题。已经显示出三个现有的基于领先的基于重复的广播协议,可以满足专用短程通信(DSRC)安全系统的可靠性和延迟要求。我们提出了一种定量模型,用于在隐藏终端和高速公路场景下,使用这三种基于重复的领先协议评估DSRC系统的服务质量(QoS)。我们通过成功概率和延迟性能来分析模型的性能。我们还提出了三种用于安全消息传递应用程序的新的媒体访问控制(MAC)层设计协议。我们引入的主要协议称为被动协作碰撞警告(PCCW)协议,用于在DSRC中提高基于重复的车辆安全消息接收的可靠性。 PCCW协议以及联合提出的增强型PCCW(EPCCW)和紧急PCCW(ePCCW)协议变体可以在现有重复协议之上工作,以用作MAC层中的被动冲突警告机制。提供了全部三种PCCW,EPCCW和ePCCW协议的相对可靠性和延迟性能的完整分析推导,可作为直观的性能评估器。 EPCCW采用物理(PHY)层创建子时隙,目的是通过避免和最小化名义上会发生故障的时隙之间的冲突概率来进一步提高可靠性。 PCCW和EPCCW的分析和仿真结果相符,并且显示出与领先的重复协议相比,消息失败率显着降低,尤其是在高冲突情况下,最佳情况下可达40%,较高的重复条件下可达80%。另外,观察到平均时隙延迟的改善,这促进了改善的车辆安全消息传递。 ePCCW对于紧急车辆(EV)通信特别有用。此增强功能可以满足严格的服务质量(QoS)要求,在DSRC系统的安全应用中尤其普遍。与领先的替代产品相比,ePCCW的可靠性提高了77%。另外,所提出的系统显示具有减少的平均时隙延迟,该延迟完全在可接受的延迟阈值内,并且提供了同类中最佳的可靠性,这是安全消息传递的关键。在所有仿真结果中,我们都使用了精确的正交频分(OFDM)MAC和物理(PHY)层设计。 PHY层仿真器是一种新的面向对象的仿真环境,它是通过在仿真环境中使用高级设计,并行性和可用性来实现的。详细显示了拟议的模拟器的高级设计和GUI布局。这可以作为学生或专业人士研究特定设计的学习/研究工具。此外,我们提供了一种简单的技术来实现仿真分区,以提高可重新配置的面向对象OFDM仿真器的并行性能。此简单技术适用于不同OFDM配置之间模拟持续时间不成比例的情况。它显示可以大大减少总仿真时间。此外,我们在PHY级别上针对不同的解映射方案进行了研究。我们建议在最近提出的非线性解映射器上使用线性解映射器。还在不同的DSRC接收器解码方案下进行了这项研究。我们还建议在频域中使用均衡概念,这些概念利用频域信道矩阵来对抗DSRC系统中的载波间干扰(ICI)而不是符号间干扰(ISI)。结果表明,与传统的和维特比辅助的信道估计方案相比,具有频域均衡方案的DSRC系统在分组错误率(PER)和误码率方面都试图与ISI对抗,从而实现了显着的性能提升。相对较高和较低速度下的速率(BER)。

著录项

  • 作者

    Jaber Nabih;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号