首页> 外文OA文献 >Calculating data warehouse aggregates using range-encoded bitmap index.
【2h】

Calculating data warehouse aggregates using range-encoded bitmap index.

机译:使用范围编码的位图索引计算数据仓库聚合。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A data warehouse is a database consisting of huge amounts of data collected from different source databases of an organization over a long period of time. Warehouse data are used for analytical purposes to make accurate and timely decisions based on previously integrated facts. Data warehouse is accessed using different kinds of analytical queries. One of the most critical issues is that those queries be responded to quickly and accurately. The size and logical schema of data warehouse systems make it difficult to apply existing query optimizing techniques originally developed for traditional database systems. Indexes are data structures, which help to locate the specific records in the database with minimum number of disk accesses. Bitmap indexing is a promising technique for data warehousing systems, but space for bitmap indexes is a major problem. This thesis proposes the use of range-encoded bitmap index to calculate aggregates. By using space optimal range-encoded bitmap index for range predicates and aggregates, the need of separate indexes for these operations can be eliminated. The range-encoded index is efficiently used for evaluating range predicates. We are proposing algorithm to evaluate aggregates with the same index that gives equal performance, which was previously achieved by storing a separate index for these operations. This will reduce the space requirements and maintenance overheads considerably without losing performance for aggregates. The proposed indexing scheme is easy to maintain and use the population ratio of 1u27s in a bitmap to decide if the bitmap has to be scanned from the disk. Paper copy at Leddy Library: Theses u26 Major Papers - Basement, West Bldg. / Call Number: Thesis2002 .B58. Source: Masters Abstracts International, Volume: 41-04, page: 1100. Adviser: Christie Ezeife. Thesis (M.Sc.)--University of Windsor (Canada), 2002.
机译:数据仓库是一个数据库,包含长时间以来从组织的不同源数据库收集的大量数据。仓库数据用于分析目的,可以基于先前综合的事实做出准确,及时的决策。使用不同种类的分析查询访问数据仓库。最关键的问题之一是要快速,准确地响应那些查询。数据仓库系统的大小和逻辑架构使得难以应用最初为传统数据库系统开发的现有查询优化技术。索引是数据结构,可帮助您以最少的磁盘访问次数在数据库中查找特定记录。对于数据仓库系统,位图索引是一种很有前途的技术,但是位图索引的空间是一个主要问题。本文提出使用范围编码的位图索引来计算聚合。通过对范围谓词和集合使用空间最佳范围编码的位图索引,可以消除针对这些操作的单独索引的需求。范围编码的索引可有效地用于评估范围谓词。我们正在提出一种算法,以评估具有相同性能且具有相同性能的索引,这是以前通过为这些操作存储单独的索引来实现的。这将大大减少空间需求和维护开销,而不会损失聚合的性能。所提出的索引方案易于维护,并使用位图中1 u27s的填充比率来确定是否必须从磁盘扫描位图。莱迪图书馆的纸质副本:论文主要论文-西楼地下室。 /电话号码:Thesis2002 .B58。资料来源:国际硕士摘要,第41-04卷,第1100页。顾问:克里斯蒂·埃塞夫(Christie Ezeife)。论文(硕士)-温莎大学(加拿大),2002。

著录项

  • 作者

    Bhutta Kashif.;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号