首页> 外文OA文献 >Plastic deformation and chip formation mechanisms during machining of copper, aluminum and an aluminum matrix composite.
【2h】

Plastic deformation and chip formation mechanisms during machining of copper, aluminum and an aluminum matrix composite.

机译:加工铜,铝和铝基复合材料时的塑性变形和切屑形成机理。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work aims to study the plastic deformation behaviour of selected workpiece materials during the chip formation process. A 6061 aluminum alloy, a C11000 commercially pure copper and a 6061-10vol.%Al2O3 particulate reinforced composite have been chosen to study their machining behaviour under the orthogonal cutting conditions. The following experiments have been performed. (1) For the machining tests, different cutting parameters have been chosen within normal cutting conditions. (2) Detailed metallographic investigations have been conducted on the chip formation areas, including the primary deformation and the secondary deformation zones as well as in the area under the machined surfaces. (3) The temperature rise during the cutting process has been measured and analyzed. The main experimental observations/results can be summarized as; (1) The shear angles vary between 0 and 90 degrees in the chip formation areas depending on the location. (2) Shear strains are calculated based on the measured values of the shear angles in all interested areas. (3) The stresses in the chip formation zone and secondary deformation zone as well as in the machined surface have been estimated by using the data from microhardness measurements. (4) The shear strain rates have been estimated from the cutting speeds and the widths of the shear bands in the chip formation areas. (5) During machining, voids are generated along the strain gradient. The coalescence of the voids leads to the formation of shear cracks near the free surface of the chip. (6) The formation of a built-up-edge has been observed when cutting the 6061-10vol.%Al2O3 composite, but not when cutting Cu and Al. The built-up-edge effects play an important role in determining the plastic deformation behaviour in chip formation process. (7) The rotation of the secondary reinforcement particles in severe plastic deformation areas has been observed. Fracture of the secondary reinforcement particles is hardly ever observed. (8) Temperature rise distribution maps have been created based on the shear strain and the stress data as well as the physical and thermal properties of the workpiece materials. (9) Tool failure has been observed during cutting of the 6061-10vol.%Al2O 3 composite. The failure mechanism has been analyzed on scanning electron microscope. (Abstract shortened by UMI.)Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses u26 Major Papers - Basement, West Bldg. / Call Number: Thesis2000 .Z51. Source: Dissertation Abstracts International, Volume: 62-10, Section: B, page: 4739. Adviser: A. T. Alpas. Thesis (Ph.D.)--University of Windsor (Canada), 2001.
机译:本工作旨在研究切屑形成过程中所选工件材料的塑性变形行为。选择了6061铝合金,C11000商业纯铜和6061-10vol。%Al2O3颗粒增强复合材料来研究其在正交切削条件下的加工性能。已经进行了以下实验。 (1)对于机加工测试,在正常切削条件下选择了不同的切削参数。 (2)已经对切屑形成区域进行了详细的金相研究,包括一次变形和二次变形区以及在加工表面下方的区域。 (3)测量并分析了切割过程中的温升。主要的实验观察结果可归纳为: (1)切屑形成区域中的剪切角根据位置在0到90度之间变化。 (2)根据所有感兴趣区域的剪切角测量值计算剪切应变。 (3)使用来自显微硬度测量的数据估算了切屑形成区和二次变形区以及加工表面中的应力。 (4)切变速率是根据切屑形成区域的切削速度和剪切带的宽度估算的。 (5)在加工过程中,沿应变梯度会产生空隙。空隙的聚结导致在切屑的自由表面附近形成剪切裂纹。 (6)当切割6061-10vol。%Al2O3复合材料时,观察到堆积边缘的形成,但是当切割Cu和Al时没有观察到。堆积边缘效应在确定切屑形成过程中的塑性变形行为中起着重要作用。 (7)已经观察到次要增强颗粒在严重的塑性变形区域中的旋转。几乎没有观察到二次增强颗粒的断裂。 (8)根据剪切应变和应力数据以及工件材料的物理和热性能创建了温升分布图。 (9)在切割6061-10vol。%Al2O 3复合材料时观察到工具故障。失效机理已经在扫描电子显微镜下进行了分析。 (摘要由UMI缩短。)电气和计算机工程系。莱迪图书馆的纸质副本:论文主要论文-西楼地下室。 /电话号码:Thesis2000 .Z51。资料来源:国际论文摘要,第62-10卷,第B部分,第4739页。顾问:A。T. Alpas。论文(博士学位)-温莎大学(加拿大),2001。

著录项

  • 作者

    Zhang Hong.;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号