首页> 外文OA文献 >Executable Attribute Grammars for Modular and Efficient Natural Language Processing
【2h】

Executable Attribute Grammars for Modular and Efficient Natural Language Processing

机译:模块化和高效自然语言处理的可执行属性语法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Language-processors that are constructed using top-down recursive-descent with backtracking parsing are highly modular, and are easy to implement and maintain. However, a widely-held inaccurate view is that top-down processors are inherently exponential for ambiguous grammars and cannot accommodate left-recursive syntax rules. It has been known that exponential time and space complexities can be avoided by memoization and compact graph-structured representation, and that left- recursive productions can be accommodated through a variety of techniques. However, until now, memoization, compact representation, and techniques for handling left-recursion have either been presented independently, or else attempts at their integration have compromised modularity and correctness of the resulting parses. Specifying syntax and semantics to describe formal languages using denotational notation of attribute grammars (AGs) has been widely practiced. However, very little work has shown the usefulness of declarative AGs for constructing computational models of natural language. Previous top-down approaches fall short in accommodating ambiguous and general CFGs with arbitrary semantics in one pass as executable specifications. Existing approaches lack in providing a declarative syntax-semantics interface that can take full advantages of dependencies between attributes of syntactic constituents to model linguistically-motivated cases. This thesis solves these shortcomings by proposing a new modular top-down syntactic and semantic analysis system, which is efficient and accommodates all forms of CFGs. Moreover, this system provides notation to declaratively specify semantics by establishing arbitrary dependencies between attributes of syntactic categories to perform linguistically-motivated tasks such as: building directly-executable natural-language query processors, computing meanings of sentences using compositional semantics, performing contextual disambiguation tasks, modelling restrictive classes of languages etc.
机译:使用自上而下的递归下降和回溯解析构造的语言处理器是高度模块化的,并且易于实现和维护。但是,一个普遍持有的不准确观点是,自上而下的处理器对于模棱两可的语法固有地是指数的,并且不能容纳左递归语法规则。众所周知,可以通过备忘录和紧凑的图形结构表示来避免指数时间和空间复杂性,并且可以通过多种技术来适应左递归生成。但是,到目前为止,记忆,紧凑表示和用于处理左递归的技术已经独立提出,或者尝试对其进行整合已经损害了结果分析的模块化和正确性。使用属性语法(AGs)的指称法指定语法和语义来描述形式语言已得到广泛实践。但是,很少有工作表明声明性AG在构建自然语言的计算模型方面的有用性。以前的自上而下的方法不足以在一次传递中将具有任意语义的歧义和通用CFG作为可执行规范。现有方法缺乏提供声明性的语法-语义接口,该接口可以充分利用句法成分的属性之间的依赖性来对语言动机的案例进行建模。本文通过提出一种新的模块化的自上而下的句法和语义分析系统来解决这些缺点,该系统高效并且可容纳所有形式的CFG。此外,该系统提供了一种符号表示法,可通过在句法类别的属性之间建立任意依赖关系来声明性地指定语义,以执行语言驱动的任务,例如:构建直接可执行的自然语言查询处理器,使用构成语义来计算句子的含义,执行上下文歧义消除任务,对语言的限制性类进行建模等。

著录项

  • 作者

    Hafiz Rahmatullah;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号