首页> 外文OA文献 >0.18 micron CMOS IP core design and methodology.
【2h】

0.18 micron CMOS IP core design and methodology.

机译:0.18微米CMOS IP内核设计和方法。

摘要

When working with 0.18mum or smaller CMOS technologies, current larger technology architectures are not easily scaled and subject to short channel effects. As a result, changes in architecture and/or unconventional transistor sizing must be done. The voltage comparator that has been designed consists of (13) transistors to form the following architectures; a differential input pair, a current mirror and a rail-pulling output stage. Special transistor sizing has been used in the current mirror biasing stage to produce a constant current source for biasing of the input transistors, overcoming the problems of non-constant current and non-constant transconductance due to short channel effects. The performance of the voltage comparator has been verified via software simulations and compared with current state-of-the-art designs. The design has been submitted to the Canadian Microelectronics Corporation for fabrication under the design name ICFWRJSS. The packaged design with bonding pads, occupies an area of 0.26mm2, and is contained in a DIP package. The fabricated chip is expected to arrive at the University in August of 2003. Actual physical testing of the voltage comparator will take place at that time. In addition to the design of the voltage comparator a detailed design methodology has also been developed. The design methodology has been developed in parallel with the comparator design and describes the major steps and considerations taken while designing the voltage comparator. The goal of the design methodology is to provide a robust guide for designing a state-of-the-art system, regardless of the skill level of the designer and regardless of the phase that the designer is at. Source: Masters Abstracts International, Volume: 42-02, page: 0650. Adviser: W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2003.
机译:当使用0.18mum或更小的CMOS技术工作时,当前较大的技术体系结构不易扩展,并且会受到短通道效应的影响。结果,必须进行架构和/或非常规晶体管尺寸的改变。设计的电压比较器由(13)个晶体管组成,以形成以下架构:差分输入对,电流镜和拉轨输出级。电流镜偏置阶段已使用特殊的晶体管尺寸来产生恒定电流源,以偏置输入晶体管,从而克服了由于短沟道效应而产生的非恒定电流和非恒定跨导问题。电压比较器的性能已通过软件仿真进行了验证,并与当前的最新设计进行了比较。该设计已经以ICFWRJSS的名称提交给加拿大微电子公司进行制造。带有焊盘的封装设计占地0.26mm2,包含在DIP封装中。预计制成的芯片将于2003年8月到达大学。届时将对电压比较器进行实际的物理测试。除了电压比较器的设计外,还开发了详细的设计方法。设计方法与比较器设计并行开发,描述了设计电压比较器时的主要步骤和注意事项。设计方法论的目的是为设计最新系统提供鲁棒的指南,而不论设计者的技能水平和设计者所处的阶段如何。资料来源:国际硕士摘要,第42卷,第0650页。顾问:W。C. Miller。论文(硕士)-温莎大学(加拿大),2003。

著录项

  • 作者

    Schrey Joseph Steven.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号