首页> 外文OA文献 >Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal)
【2h】

Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal)

机译:评估RapidEye多光谱影像对马德拉岛(葡萄牙)植被测绘的有效性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Madeira Island is a biodiversity hotspot due to its high number of endemic/native plant species. In this work we developed and assessed a methodological framework to produce a RapidEye-based vegetation map. Reasonable accuracies were achieved for a 26 categories classification scheme in two different seasons. We tested pixel and object based approaches and the inclusion of a vegetation index band on top of the pre-processed RapidEye bands stack. Object based generally showed to outperform pixel based classification approaches except for linear or highly scattered classes. The addition of a vegetation index to the workflow increased the separability of the Jeffrey-Matusita least separable class pairs, but not necessarily the overall accuracy. The Pontius accuracy assessment highlighted class specific accuracy tradeoffs related to different combinations of the inputs and methods. The approach to be used, in conclusion, should be carefully considered on the basis of the desired result.
机译:马德拉岛(Madeira Island)因其特有/本地植物物种数量众多而成为生物多样性热点。在这项工作中,我们开发并评估了用于生成基于RapidEye的植被图的方法框架。在两个不同的季节中,针对26个类别的分类方案实现了合理的准确性。我们测试了基于像素和对象的方法,并在预处理的RapidEye带堆栈顶部包含了植被指数带。除线性或高度分散的类外,基于对象的对象通常表现出优于基于像素的分类方法。在工作流程中添加植被指数增加了Jeffrey-Matusita最小可分离类对的可分离性,但不一定提高了整体准确性。 Pontius准确性评估强调了与输入和方法的不同组合相关的特定于类的准确性权衡。最后,应根据所需结果仔细考虑要使用的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号