首页> 外文OA文献 >Molecular analyses on the mechanism of nonhost resistance of barley (Hordeum vulgare L.) to the wheat powdery mildew fungus (Blumeria graminis f.sp. tritici)
【2h】

Molecular analyses on the mechanism of nonhost resistance of barley (Hordeum vulgare L.) to the wheat powdery mildew fungus (Blumeria graminis f.sp. tritici)

机译:大麦(Hordeum vulgare L.)对小麦白粉病真菌(Blumeria graminis f.sp. tritici)的非寄主抗性机理的分子分析。

摘要

Every plant pathogen has only a limited range of host species on which it can cause disease. The remaining plants are ’nonhost‘ plants to this pathogen and can resist the attacker due to a multitude of different mechanisms that collectively contribute to nonhost resistance. Due to its durable effectiveness, nonhost resistance has moved into the focus of scientific interest, since it promises to be of use for the generation of resistant crop plants. Considerable effort has been made to elucidate signal transduction processes of plant defense. In spite of a number of investigations, which examined the transcriptome of plants during the interaction with pathogens, particularly powdery mildew fungi, we are still far from understanding the nature of nonhost resistance especially in terms of its constancy. Hence, this study aimed at the advanced understanding of the mechanisms that underlie nonhost resistance and its counterpart, basic compatibility. For this purpose, the model system of barley (Hordeum vulare L.) interacting with appropriate or inappropriate formae speciales of the biotrophic fungal pathogen Blumeria graminis was used. Since colonization-success of the powdery mildew fungus depends upon the living host cell, it was also part of this work to investigate the role of a putative cell death inhibitor in cell death and defense regulation in barley.A macroarray based approach was followed to comparatively analyze the expression of 1,536 barley gene transcripts in the early host interaction with Blumeria graminis f.sp. hordei (Bgh) and the nonhost pathogen Blumeria graminis f.sp. tritici (Bgt), respectively. The cDNA fragments on the macroarray mainly derived from epidermal peels of plants pre-treated with the chemical resistance activating compound acibenzolar-S-methyl, and were therefore expected to be enriched with defense-related transcripts. 102 spots corresponding to 94 genes repeatedly gave B. graminis-responsive signals on the macroarray at 12 and/or 24 hours after inoculation. In independent expression analyses, the differential expression of 18 arbitrarily selected genes could be confirmed. The temporal expression profile of the majority of the genes was similar in the compatible and the incompatible interaction. The data support the view that common genetic and mechanistic elements of plant defense underlie background resistance in compatible interactions and nonhost resistance.BAX INHIBITOR-1 (BI-1) proteins are negative regulators of programmed cell death in mammals and plants. When overexpressed in epidermal cells of barley, BI-1 suppressed non-specific background resistance and mlo-mediated penetration resistance to the biotrophic fungal pathogen Bgh. It could be demonstrated that overexpression of BI-1 partially protected barley cells from cell death and breaks nonhost resistance of barley epidermal cells to the nonhost pathogen Bgt. The degree of transgene-induced accessibility was thereby similar to the effect achieved by overexpression of the defense suppressor gene MLO and could not be further enhanced by simultaneous expression of both BI-1 and MLO. Furthermore, results indicate that during defense suppression, BI-1 modulates defense-associated hydrogen peroxide accumulation underneath the site of attempted fungal penetration. In barley epidermal cells, a functional green fluorescing GFP-BI-1 fusion protein accumulated in endomembranes and the nuclear envelope and was found in the vicinity of the site of fungal attack and/or around intracellular fungal structures. Together, enhanced expression of barley BI-1 suppresses nonhost resistance to Bgt, linking barley nonhost penetration resistance with cell death regulation.
机译:每种植物病原体都只能在一定范围内引起疾病。其余植物是这种病原体的“非寄主”植物,由于多种不同的机制共同导致了非寄主的抗性,因此可以抵抗攻击者。由于其持久的有效性,非寄主抗性已成为科学兴趣的焦点,因为它有望用于产生抗性农作物。为了阐明植物防御的信号转导过程,已经做出了相当大的努力。尽管进行了许多研究,其中包括在与病原体(尤其是白粉病真菌)相互作用的过程中检查了植物的转录组,但我们对非宿主抗性的本质(尤其是恒定性)仍然了解甚少。因此,本研究旨在对非宿主抗性及其相对应的基本相容性机制的高级理解。为了这个目的,使用了大麦(Hordeum vulare L.)与生养性真菌病原体Blumeria graminis的适当或不适当的形态科相互作用的模型系统。由于白粉病真菌的定植成功取决于活的宿主细胞,因此研究假定的细胞死亡抑制剂在大麦细胞死亡和防御调节中的作用也是这项工作的一部分。分析了在与Blumeria graminis f.sp的早期宿主相互作用中1,536个大麦基因转录物的表达。 hordei(Bgh)和非寄主病原体Blumeria graminis f.sp. tritici(Bgt)。大分子阵列上的cDNA片段主要来源于用化学抗性激活化合物苯并噻唑-S-甲基进行了预处理的植物的表皮果皮,因此有望富含防御相关的转录本。接种后12和/或24小时,对应于94个基因的102个斑点在宏阵列上反复产生了芽孢杆菌反应信号。在独立的表达分析中,可以确认18个任意选择的基因的差异表达。大多数基因的时间表达谱在相容和不相容相互作用中相似。数据支持这样的观点,即植物防御的常见遗传和机制要素是相容相互作用和非宿主抗性的背景抗性。BAXINHIBITOR-1(BI-1)蛋白是哺乳动物和植物中程序性细胞死亡的负调节剂。当在大麦的表皮细胞中过表达时,BI-1会抑制对生物营养性真菌病原体Bgh的非特异性背景抗性和mlo介导的抗渗透性。可以证明BI-1的过表达部分保护大麦细胞免于细胞死亡并破坏大麦表皮细胞对非宿主病原体Bgt的非宿主抗性。因此,转基因诱导的可及性程度类似于通过防御抑制基因MLO的过表达实现的效果,并且不能通过同时表达BI-1和MLO而进一步增强。此外,结果表明,在防御抑制过程中,BI-1会在试图穿透真菌的部位下方调节与防御相关的过氧化氢积累。在大麦表皮细胞中,功能性的绿色荧光GFP-BI-1融合蛋白积聚在子宫内膜和核被膜中,并在真菌侵袭部位附近和/或细胞内真菌结构附近发现。在一起,大麦BI-1的增强表达抑制了非宿主对Bgt的抗性,将大麦非宿主穿透性抗性与细胞死亡调节联系在一起。

著录项

  • 作者

    Eichmann Ruth;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号