首页> 外文OA文献 >Intelligent Navigational Strategies For Multiple Wheeled Mobile Robots Using Artificial Hybrid Methodologies
【2h】

Intelligent Navigational Strategies For Multiple Wheeled Mobile Robots Using Artificial Hybrid Methodologies

机译:使用人工混合方法的多轮移动机器人智能导航策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At present time, the application of mobile robot is commonly seen in every fields of science and engineering. The application is not only limited to industries but also in thehousehold, medical, defense, transportation, space and much more. They can perform all kind of tasks which human being cannot do efficiently and accurately such as working in hazardous and highly risk condition, space research etc. Hence, the autonomous navigation of mobile robot is the highly discussed topic of today in an uncertain environment. The present work concentrates on the implementation of the Artificial Intelligence approaches for the mobile robot navigation in an uncertain environment. The obstacle avoidance and optimal path planning is the key issue in autonomous navigation, which is solved in the present work by using artificial intelligent approaches. The methods use for the navigational accuracy and efficiency are Firefly Algorithm (FA), Probability- Fuzzy Logic (PFL), Matrix based Genetic Algorithm (MGA) and Hybrid controller (FAPFL,FA-MGA, FA-PFL-MGA).The proposed work provides an effective navigation of single and multiple mobile robots in both static and dynamic environment. The simulational analysis is carried over the Matlab software and then it is implemented on amobile robot for real-time navigation analysis. During the analysis of the proposed controller, it has been noticed that the Firefly Algorithm performs well as compared to fuzzy and genetic algorithm controller. It also plays an important role inbuilding the successful Hybrid approaches such as FA-PFL, FA-MGA, FA-PFL-MGA. The proposed hybrid methodology perform well over the individual controller especially for pathoptimality and navigational time. The developed controller also proves to be efficient when they are compared with other navigational controller such as Neural Network, Ant Colony Algorithm, Particle Swarm Optimization, Neuro-Fuzzy etc.
机译:目前,移动机器人的应用已在科学与工程的各个领域普遍可见。该应用程序不仅限于行业,还包括家庭,医疗,国防,运输,太空等领域。它们可以执行人类无法高效,准确地完成的各种任务,例如在危险和高风险条件下进行的工作,太空研究等。因此,在不确定的环境中,移动机器人的自主导航已成为当今讨论最多的话题。目前的工作集中于在不确定环境中实现移动机器人导航的人工智能方法。避障和最优路径规划是自主导航的关键问题,目前的工作是通过人工智能方法解决的。用于提高导航精度和效率的方法有萤火虫算法(FA),概率模糊逻辑(PFL),基于矩阵的遗传算法(MGA)和混合控制器(FAPFL,FA-MGA,FA-PFL-MGA)。这项工作可以在静态和动态环境中有效地导航单个和多个移动机器人。仿真分析通过Matlab软件进行,然后在移动机器人上进行实时导航分析。在对所提出的控制器进行分析的过程中,已经注意到与模糊和遗传算法控制器相比,萤火虫算法表现良好。它在建立成功的混合方法(例如FA-PFL,FA-MGA,FA-PFL-MGA)中也起着重要作用。所提出的混合方法在单个控制器上表现良好,尤其是在路径优化和导航时间方面。与其他导航控制器(如神经网络,蚁群算法,粒子群优化,神经模糊等)相比,开发的控制器也被证明是高效的。

著录项

  • 作者

    Patle Bhumeshwar Kunjilal;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号