首页> 外文OA文献 >Image Segmentation and 3-D Reconstruction of Coronary Artery
【2h】

Image Segmentation and 3-D Reconstruction of Coronary Artery

机译:冠状动脉的图像分割和3D重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Segmentation of arterial wall boundaries from biomedical images is an important issue for many applications such as in the study of plaque characteristics, to extract mechanical properties of the arterial wall, its 3-D construction, and the measurements such as wall radius, lumen radius and lumen size. So here we present a solution to segmentation of images of coronary arteries and 3D construction. The structure introduced here is a set of connected vertices. An initial contour model which is defined here is allowed to deform according to an energy minimizing term with minimum number of iterations. The energy associated with the contours are depends on curvature of contour, and image features. Using training data in a properly built shape space, we are able to classify media and adventitia walls approximately using a large set of data sets using Support Vector Machines. The 3D construction of artery using point matching of successive frames is also explained here with less complexity. The tests of the presented algorithm on a large set of data depicts the effectiveness of this approach.
机译:从生物医学图像中分割动脉壁边界是许多应用的重要问题,例如在斑块特征研究中,提取动脉壁的机械性能,其3D结构以及诸如壁半径,管腔半径和流明大小。因此,这里我们提出了一种分割冠状动脉图像和3D构造的解决方案。这里介绍的结构是一组连接的顶点。在此定义的初始轮廓模型可以根据能量最小项以最少的迭代次数进行变形。与轮廓相关联的能量取决于轮廓的曲率和图像特征。通过在适当构建的形状空间中使用训练数据,我们能够使用支持向量机使用大量数据集对媒体和外膜壁进行大致分类。在此还以较少的复杂性说明了使用连续帧的点匹配进行的3D动脉构造。在大量数据上对所提出算法的测试表明了这种方法的有效性。

著录项

  • 作者

    Prasad Arpan Suravi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号