机译:抽取对子宫肌电信号非线性分析方法分类率的影响
机译:具有三位置继电器块和非线性控制装置的继电器控制系统相对于实际信号的线性化
机译:通过归纳分类:在非线性动力系统的建模和控制中的应用
机译:为非线性和MIMO外骨骼系统设计自调整调节器控制器,以自适应去耦辅助测试设置
机译:用于非线性系统中控制信号重建的神经网络及其在飞机动力学中的应用。
机译:心电图信号对情绪状态的分类:基于赫斯特的非线性方法
机译:EEG信号在EMD域S. S. Shafiul Alam,S中的非线性动力学使用非线性动力学。 M. Shafiul Alam,Aurangozeb和Syed Tarekshahriar摘要 - 基于EMD Chaos的方法,提出了对应于健康人的EEG信号,癫痫发作期间的癫痫患者和Seizureattacks。脑电图(EEG)首先被凭经上分解为内在模式功能(IMF)。这些IMF的非线性动力学在最大范围的指数(LLE)和相关尺寸(CD)方面是量化的。本域中的混沌分析应用于与健康人相对应的大型脑电图(Asepileptic患者)(两者都有癫痫发作)。因此,所获得的LLE和CD表展的价值可以从EMD领域的其他EEG信号中清晰地区分脑电图的表达展示。本拟议的方法可以帮助研究人员以预测癫痫发作的癫痫发作技术。索引术语 - 脑电图(EEG),仿真态分解(EMD),最大的Lyapunov指数(LLE),相关维度(CD),癫痫发作。作者与电气电子和电子工程公司,孟加拉国工程和技术大学,孟加拉国达卡 - 1000(电子邮件:imamul@eee.buet.ac.bd)pdf cite:s. m. shafiul Alam,s。 M. Shafiul Alam,Aurangozeb和Syed Tarek Shahriar,“EEG信号歧视在EMD领域的非线性动态,”计算机电气工程卷国际杂志。 4,不。 3,pp。326-330,2012,上一篇论文对情绪的看法,使用建设性的学习言论下一篇论文物理层障碍意识到OVPN连接选择机制版权所有©2008-2013。国际计算机科学与信息技术协会出版社(IACSIT Press)
机译:FET传导通道中非线性等离子体振荡的数值流体力学模型及其在谐波信号非线性变换中的应用。