首页> 外文OA文献 >Robust Facial Expression Recognition Using Local Binary Patterns and Gabor Filters
【2h】

Robust Facial Expression Recognition Using Local Binary Patterns and Gabor Filters

机译:使用局部二进制模式和Gabor滤波器进行鲁棒的面部表情识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Facial expressions and gestures provide intuitional cues for interpersonal communication. Imparting intelligence to computer for identifying facial expressions is a crucial task. Facial expressions and emotions are governed by identification of facial muscle movement by visual cortex and training a machine to identify these highly in-situ movements is our primary interest. This thesis presents robust facial expression analysis algorithms for static images as well as an efficient extension to sequence of images. We present an efficient preprocessing method which eliminates the effect of illumination on the detected face images thus making them efficient for feature extraction. Robust Local Binary Patterns and Gabor filters are implemented for feature extraction which are known to provide efficient face representation and analysis.LBP facial features are represented in form of weighted histograms which are best classified using Kullback Leibler divergence measure .Artificial Neural Network classifier is also tested for classification of fused Gabor and LBP features. Further expressions are rarely defined by static images as their complete essence lies in a sequence of images. So further exploration is concentrated on analyzing expressions from a sequence of images. To eliminate head pose variations in consecutive frames and register images to keep the spatial information intact which is necessary for LBP feature representation we adopted SIFT flow alignment procedure and further tested the resultant image classification with implemented algorithms. The classification accuracy resulted in 95.24% for static expression images and 86.31% for sequence of images which is indeed appreciable when compared to other standard methods.
机译:面部表情和手势为人际交流提供了直观的线索。将智能赋予计算机以识别面部表情是一项至关重要的任务。面部表情和情绪受视觉皮层识别面部肌肉运动的支配,训练机器识别这些高度原位运动是我们的主要兴趣。本文提出了针对静态图像的鲁棒面部表情分析算法以及对图像序列的有效扩展。我们提出了一种有效的预处理方法,该方法消除了照明对检测到的面部图像的影响,从而使它们有效地用于特征提取。鲁棒的局部二值模式和Gabor滤波器用于特征提取,可以提供有效的面部表示和分析.LBP面部特征以加权直方图的形式表示,最好使用Kullback Leibler散度度量进行分类。还对人工神经网络分类器进行了测试用于对融合的Gabor和LBP特征进行分类。静态图像很少定义进一步的表达式,因为它们的完整本质在于一系列图像。因此,进一步的探索集中在分析来自图像序列的表达。为了消除连续帧中的头部姿势变化并注册图像以保持空间信息完整(这是LBP特征表示所必需的),我们采用了SIFT流对齐程序,并进一步用实现的算法测试了所得图像分类。与其他标准方法相比,静态表达图像的分类精度为95.24%,图像序列的分类精度为86.31%,这确实是可观的。

著录项

  • 作者

    Vupputuri Anusha;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号