首页> 外文OA文献 >Effort Estimation of Agile and Web-Based Software Using Artificial Neural Networks
【2h】

Effort Estimation of Agile and Web-Based Software Using Artificial Neural Networks

机译:基于人工神经网络的敏捷和基于Web的软件的工作量估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The agile methodology of software development is accepted as a superior alternative to conventional methods of software development, because of its inherent benefits like iterative development, rapid delivery and reduced risk. Hence, software developers are required to estimate the effort necessary to develop projects by agile methodology in an efficient manner because the requirements keep on changing. Web has become a part and parcel of our lives. People depend on Internet for almost everything these days. Many business units depend on Internet for communication with clients and for outsourcing load to other branches. In such a scenario, there is a necessity of efficient development of web-based software. For improving the efficiency of software development, resource utilization must be optimum. For achieving this, we need to be able to ascertain effectively, what kind of people/materials are required in what quantity, for development. This research aims at developing efficient effort estimation models for agile and web-based software by using various neural networks such as Feed-Forward Neural Network (FFNN), Radial Basis Function Neural Network (RBFN), Functional Link Artificial Neural Network (FLANN) and Probabilistic Neural Network (PNN) and provide a comparative assessment of their performance. The approach used for agile software effort estimation is the Story Point Approach and that for web-based software effort estimation is the IFPUG Function Point Approach.
机译:敏捷软件开发方法被认为是传统软件开发方法的替代方法,因为它具有诸如迭代开发,快速交付和降低风险之类的内在优势。因此,由于需求不断变化,因此需要软件开发人员以敏捷的方法来估算开发敏捷项目所需的工作量。网络已经成为我们生活的一部分。这些天人们几乎都依赖互联网。许多业务部门都依赖Internet与客户进行通信以及将负载外包给其他分支机构。在这种情况下,有必要有效开发基于Web的软件。为了提高软件开发效率,必须充分利用资源。为了实现这一目标,我们需要能够有效地确定发展需要多少数量的人员/材料。这项研究旨在通过使用各种神经网络(例如前馈神经网络(FFNN),径向基函数神经网络(RBFN),功能链接人工神经网络(FLANN)和神经网络)为敏捷和基于Web的软件开发有效的工作量估算模型。概率神经网络(PNN)并对其性能进行比较评估。用于敏捷软件工作量估算的方法是故事点方法,而用于基于Web的软件工作量估算的方法是IFPUG功能点方法。

著录项

  • 作者

    Panda Aditi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号